Beta functions of local fields of characteristic zero. Applications to string amplitudes
Izvestiya. Mathematics , Tome 66 (2002) no. 1, pp. 41-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

For local fields $\mathbb K$ of characteristic zero, along with the beta function $\mathbf{B}_{\mathbb K}$ we introduce a new sequence $\mathbf{B}_{\mathbb K}^{(n)}$, $n=1,2,\dots$, of beta functions of $n$ complex arguments expressed in terms of a product of gamma functions $\boldsymbol{\Gamma}_{\mathbb K}$ for arbitrary characters (ramified or not). We consider applications to the 4-particle tree string and superstring amplitudes. It turns out that the tachyon string amplitudes can be expressed in terms of the well-known beta function $\mathbf{B}_{\mathbb K}=\mathbf{B}_{\mathbb K}^{(2)}$. The massless superstring amplitudes can be expressed in terms of the new beta function $\mathbf{B}'_{\mathbb K}=\mathbf{B}_{\mathbb K}^{(3)}$ for non-trivial characters. We establish that the amplitudes of all known strings and superstrings admit adelic formulae. We give a new proof of the formula relating the 4-particle tree amplitudes for closed strings (generalized Virasoro amplitudes) to the product of two amplitudes for open strings (classical Veneziano amplitudes).
@article{IM2_2002_66_1_a1,
     author = {V. S. Vladimirov},
     title = {Beta functions of local fields of characteristic zero. {Applications} to string amplitudes},
     journal = {Izvestiya. Mathematics },
     pages = {41--57},
     publisher = {mathdoc},
     volume = {66},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a1/}
}
TY  - JOUR
AU  - V. S. Vladimirov
TI  - Beta functions of local fields of characteristic zero. Applications to string amplitudes
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 41
EP  - 57
VL  - 66
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a1/
LA  - en
ID  - IM2_2002_66_1_a1
ER  - 
%0 Journal Article
%A V. S. Vladimirov
%T Beta functions of local fields of characteristic zero. Applications to string amplitudes
%J Izvestiya. Mathematics 
%D 2002
%P 41-57
%V 66
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a1/
%G en
%F IM2_2002_66_1_a1
V. S. Vladimirov. Beta functions of local fields of characteristic zero. Applications to string amplitudes. Izvestiya. Mathematics , Tome 66 (2002) no. 1, pp. 41-57. http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a1/

[1] Grin M., Shvarts Dzh., Vitten E., Teoriya superstrun, T. 1, 2, Mir, M., 1990

[2] Brekke L., Freund P. G. O., “$p$-Adic Numbers in Physics”, Phys. Rep. Rev. Sect. Phys. Lett., 233:1 (1993), 1–66 | MR

[3] Kawai H., Lewellen D. C., Tye S.-H., “A relation between tree amplitudes of closed and open strings”, Nucl. Phys. B, 269 (1986), 1–23 | DOI | MR

[4] Veil A., Osnovy teorii chisel, Mir, M., 1967 | MR

[5] Freund P. G. O., Witten E., “Adelic String Amplitudes”, Phys. Lett. B, 199 (1987), 191–194 | DOI | MR

[6] Vladimirov V. S., “On the Freund-Witten Adelic Formula for Veneziano Amplitudes”, Lett. Math. Phys., 28 (1993), 123–131 | DOI | MR

[7] Vladimirov V. S., “Adelic formulas for gamma- and beta-functions in algebraic number fields”, $p$-Adic Functional Analysis, Lect. Notes Pure and Appl. Math., 192, M. Dekker, N. Y., 1997, 383–395 | MR | Zbl

[8] Vladimirov V. S., “Adelnye formuly dlya gamma- i beta-funktsii odnoklassnykh kvadratichnykh polei; primeneniya k 4-chastichnym strunnym amplitudam rasseyaniya”, Tr. Matem. in-ta im. V. A. Steklova RAN, 228 (2000), 76–89 | MR | Zbl

[9] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, Fizmatlit, M., 1958 | Zbl

[10] Gelfand I. M., Graev M. M., Pyatetskii-Shapiro I. I., Teoriya predstavlenii i avtomorfnye funktsii, Nauka, M., 1966 | MR

[11] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR

[12] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1985 | MR | Zbl

[13] Schikhof W. H., Ultrametric Calculus: An Introduction to $p$-Adic Analysis, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl

[14] Koblits N., $p$-adicheskie chisla, $p$-adicheskii analiz i dzeta-funktsiya, Mir, M., 1982 | MR

[15] Vladimirov V. S., “Some problems of analysis on the field of $p$-adic numbers”, Integral Transforms and Special Functions, 6:1–4 (1998), 111–121 | DOI | MR | Zbl

[16] Vladimirov V. S., “Obobschennye funktsii nad polem $p$-adicheskikh chisel”, UMN, 43:5 (1988), 17–53 | MR | Zbl