On the global domain of influence of stable solutions with interior layers in the two-dimensional case
Izvestiya. Mathematics , Tome 66 (2002) no. 1, pp. 1-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the initial-boundary problem for the singularly perturbed non-stationary reaction-diffusion equation with non-linearity of cubic type. We impose conditions sufficient for the existence of a stable stationary solution with an interior transition layer in the neighbourhood of a certain curve. We investigate the set of initial functions belonging to the domain of influence of this solution.
@article{IM2_2002_66_1_a0,
     author = {V. F. Butuzov and I. V. Nedelko},
     title = {On the global domain of influence of stable solutions with interior layers in the two-dimensional case},
     journal = {Izvestiya. Mathematics },
     pages = {1--40},
     publisher = {mathdoc},
     volume = {66},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a0/}
}
TY  - JOUR
AU  - V. F. Butuzov
AU  - I. V. Nedelko
TI  - On the global domain of influence of stable solutions with interior layers in the two-dimensional case
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 1
EP  - 40
VL  - 66
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a0/
LA  - en
ID  - IM2_2002_66_1_a0
ER  - 
%0 Journal Article
%A V. F. Butuzov
%A I. V. Nedelko
%T On the global domain of influence of stable solutions with interior layers in the two-dimensional case
%J Izvestiya. Mathematics 
%D 2002
%P 1-40
%V 66
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a0/
%G en
%F IM2_2002_66_1_a0
V. F. Butuzov; I. V. Nedelko. On the global domain of influence of stable solutions with interior layers in the two-dimensional case. Izvestiya. Mathematics , Tome 66 (2002) no. 1, pp. 1-40. http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a0/

[1] Faif P., Grinli V., “Vnutrennie perekhodnye sloi dlya ellipticheskikh kraevykh zadach s malym parametrom”, UMN, 29:4 (1974), 103–131 | MR

[2] Nefedov N. N., “Metod differentsialnykh neravenstv dlya nekotorykh klassov nelineinykh singulyarno vozmuschennykh zadach s vnutrennimi sloyami”, Differents. uravneniya, 31:7 (1995), 1132–1139

[3] Vasileva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vyssh. shk., M., 1990 | MR | Zbl

[4] Butuzov V. F., Vasileva A. B., Nefedov N. N., “Kontrastnye struktury v singulyarno vozmuschennykh zadachakh”, Avtomatika i telemekhanika, 11:7 (1997), 4–32 | MR

[5] Butuzov V. F., Nedelko I. V., “Ustoichivost kontrastnykh struktur tipa stupenki v dvumernom sluchae”, Dokl. RAN, 366:3 (1999), 295–298 | MR | Zbl

[6] Butuzov V. F., Nedelko I. V., “Asimptoticheskaya ustoichivost reshenii singulyarno vozmuschennykh kraevykh zadach s pogranichnymi i vnutrennimi sloyami”, Differents. uravneniya, 36:2 (2000), 198–208 | MR | Zbl

[7] Butuzov V. F., Nedelko I. V., “O globalnoi oblasti vliyaniya reshenii s vnutrennimi sloyami”, Dokl. RAN, 373:2 (2000), 155–156 | MR | Zbl

[8] Amann H., “Periodic solutions of semilinear parabolic equations”, Nonlinear Analysis, Collection of Papers in Honor of Erich Rothe, Academic Press, N. Y., 1978, 1–29 | MR

[9] Amann H., “Existence and stability of solutions for semilinear parabolic systems and applications to some diffusion reaction equations”, Proc. Roy. Soc. of Edinburgh, 81:1 (1978), 35–47 | MR | Zbl

[10] Nefedov N. N., “Metod differentsialnykh neravenstv dlya nekotorykh singulyarno vozmuschennykh zadach v chastnykh proizvodnykh”, Differents. uravneniya, 31:4 (1995), 719–722 | MR | Zbl

[11] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl