Monge--Amp\'ere equations and characteristic connection functors
Izvestiya. Mathematics , Tome 65 (2001) no. 6, pp. 1243-1290.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate contact equivalence of Monge–Ampére equations. We define a category of Monge–Ampére equations and introduce the notion of a characteristic connection functor. This functor maps the category of Monge–Ampére equations to the category of affine connections. We give a constructive description of the characteristic connection functors corresponding to three subcategories, which include a large class of Monge–Ampére equations of elliptic and hyperbolic type. This essentially reduces the contact equivalence problem for Monge–Ampére equations in the cases under study to the equivalence problem for affine connections. Using E. Cartan's familiar theory, we are thus able to state and prove several criteria of contact equivalence for a large class of elliptic and hyperbolic Monge–Ampére equations.
@article{IM2_2001_65_6_a5,
     author = {D. V. Tunitsky},
     title = {Monge--Amp\'ere equations and characteristic connection functors},
     journal = {Izvestiya. Mathematics },
     pages = {1243--1290},
     publisher = {mathdoc},
     volume = {65},
     number = {6},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_6_a5/}
}
TY  - JOUR
AU  - D. V. Tunitsky
TI  - Monge--Amp\'ere equations and characteristic connection functors
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 1243
EP  - 1290
VL  - 65
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_6_a5/
LA  - en
ID  - IM2_2001_65_6_a5
ER  - 
%0 Journal Article
%A D. V. Tunitsky
%T Monge--Amp\'ere equations and characteristic connection functors
%J Izvestiya. Mathematics 
%D 2001
%P 1243-1290
%V 65
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_6_a5/
%G en
%F IM2_2001_65_6_a5
D. V. Tunitsky. Monge--Amp\'ere equations and characteristic connection functors. Izvestiya. Mathematics , Tome 65 (2001) no. 6, pp. 1243-1290. http://geodesic.mathdoc.fr/item/IM2_2001_65_6_a5/

[1] Uells R., Differentsialnoe ischislenie na kompleksnykh mnogoobraziyakh, Mir, M., 1976 | MR

[2] Lychagin V. V., “Kontaktnaya geometriya i nelineinye differentsialnye uravneniya vtorogo poryadka”, UMN, 34:1(205) (1979), 137–165 | MR | Zbl

[3] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR

[4] Kobayasi Sh., Gruppy preobrazovanii v differentsialnoi geometrii, Mir, M., 1986 | MR

[5] Lie S., “Kurzes Résumé mehrerer neuer Theorien”, Gesammelte Abhandlungen, B. 3, B.G.Teubner, Leipzig; H. Aschehoug Co, Oslo, 1922, 1–4

[6] Lie S., “Neue Integrationsmethode der Monge-Ampéreschen Gleichung”, Gesammelte Abhandlungen, B. 3, B.G.Teubner, Leipzig; H. Aschehoug Co, Oslo, 1922, 287–294

[7] Lie S., “Untersuchungen üb Differentialgleihungen”, Gesammelte Abhandlungen, B. 3, B.G.Teubner, Leipzig; H. Aschehoug Co, Oslo, 1922, 537–547

[8] Goursat E., Lecons sur l'intégration des équations aux dérivées partielles du second ordre, V. 1, Hermann, Paris, 1896 | Zbl

[9] Lychagin V. V., Rubtsov V. N., “O teoremakh Sofusa Li dlya uravnenii Monzha–Ampera”, DAN BSSR, 27:5 (1983), 396–398 | MR | Zbl

[10] Lychagin V. V., Rubtsov V. N., Chekalov I. V., “A classification of Monge–Ampère equations”, Ann. scient. Éc. Norm. Sup. 4 série, 26 (1993), 281–308 | MR | Zbl

[11] Morimoto T., “La géométrie des équations Monge–Ampère”, C.R. Acad. Sc. Paris. Série A, 289 (1979), 25–28 | MR | Zbl

[12] Chizh O. P., “Giperbolicheskie uravneniya Monzha–Ampera s tranzitivnymi gruppami simmetrii”, DAN Belarusi. Ser. fiz.-mat. nauk, 42:2 (1998), 45–48 | MR

[13] Chizh O. P., “Kontaktnaya geometriya uravnenii Monzha–Ampera”, Izv. AN Belarusi. Ser. fiz.-mat. nauk, 42:4 (1998), 52–56 | MR

[14] Tunitskii D. V., “Ekvivalentnost i kharakteristicheskie svyaznosti uravnenii Monzha–Ampera”, Matem. sb., 188:5 (1997), 131–157 | MR

[15] Tunitskii D. V., “O kontaktnoi linearizatsii uravnenii Monzha–Ampera”, Izv. RAN. Ser. matem., 60:2 (1996), 195–200 | MR

[16] Postnikov M. M., Differentsialnaya geometriya, Nauka, M., 1988 | MR | Zbl

[17] Khirsh M., Differentsialnaya topologiya, Mir, M., 1979 | MR | Zbl

[18] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981

[19] Volf Dzh., Prostranstva postoyannoi krivizny, Nauka, M., 1982 | MR

[20] Bibikov Yu. N., Kurs obyknovennykh differentsialnykh uravnenii, Vysshaya shkola, M., 1991

[21] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, 2, Nauka, M., 1981