The Legendre operator function
Izvestiya. Mathematics , Tome 65 (2001) no. 6, pp. 1073-1083

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the properties of the resolving operator of the Cauchy problem for an abstract Legendre equation with an unbounded linear operator $A$. We establish a relationship between this resolving operator and that of the Cauchy problem for an abstract Euler–Poisson–Darboux equation and prove the coincidence of the sets of operators $A$ for which the Cauchy problems for the Legendre and Euler–Poisson–Darboux equations are uniformly well posed.
@article{IM2_2001_65_6_a0,
     author = {A. V. Glushak},
     title = {The {Legendre} operator function},
     journal = {Izvestiya. Mathematics },
     pages = {1073--1083},
     publisher = {mathdoc},
     volume = {65},
     number = {6},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_6_a0/}
}
TY  - JOUR
AU  - A. V. Glushak
TI  - The Legendre operator function
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 1073
EP  - 1083
VL  - 65
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_6_a0/
LA  - en
ID  - IM2_2001_65_6_a0
ER  - 
%0 Journal Article
%A A. V. Glushak
%T The Legendre operator function
%J Izvestiya. Mathematics 
%D 2001
%P 1073-1083
%V 65
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_6_a0/
%G en
%F IM2_2001_65_6_a0
A. V. Glushak. The Legendre operator function. Izvestiya. Mathematics , Tome 65 (2001) no. 6, pp. 1073-1083. http://geodesic.mathdoc.fr/item/IM2_2001_65_6_a0/