The finite basis property of $T$-spaces over fields of characteristic zero
Izvestiya. Mathematics , Tome 65 (2001) no. 5, pp. 1041-1071.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove that any $T$-space over a field of characteristic zero has a finite basis. This result generalizes Kemer's theorem on the existence of a finite basis for any system of associative identities over a field of characteristic zero.
@article{IM2_2001_65_5_a7,
     author = {V. V. Shchigolev},
     title = {The finite basis property of $T$-spaces over fields of characteristic zero},
     journal = {Izvestiya. Mathematics },
     pages = {1041--1071},
     publisher = {mathdoc},
     volume = {65},
     number = {5},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a7/}
}
TY  - JOUR
AU  - V. V. Shchigolev
TI  - The finite basis property of $T$-spaces over fields of characteristic zero
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 1041
EP  - 1071
VL  - 65
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a7/
LA  - en
ID  - IM2_2001_65_5_a7
ER  - 
%0 Journal Article
%A V. V. Shchigolev
%T The finite basis property of $T$-spaces over fields of characteristic zero
%J Izvestiya. Mathematics 
%D 2001
%P 1041-1071
%V 65
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a7/
%G en
%F IM2_2001_65_5_a7
V. V. Shchigolev. The finite basis property of $T$-spaces over fields of characteristic zero. Izvestiya. Mathematics , Tome 65 (2001) no. 5, pp. 1041-1071. http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a7/

[1] Kemer A. R., “O nematrichnykh mnogoobraziyakh”, Algebra i logika, 19:3 (1980), 255–283 | MR | Zbl

[2] Kemer A. R., “Shpekhtovost $T$-idealov so stepennym rostom korazmernostei”, Sib. matem. zhurn., 19:1 (1978), 54–69 | MR | Zbl

[3] Kemer A. R., “Mnogoobraziya i $Z_2$-graduirovannye algebry”, Izv. AN SSSR. Ser. matem., 48:5 (1984), 1042–1059 | MR

[4] Schigolev V. V., “Primery beskonechno baziruemykh $T$-prostranstv”, Matem. sb., 191:3 (2000), 143–160 | MR | Zbl

[5] Schigolev V. V., “Primery beskonechno baziruemykh $T$-idealov”, Fund. i prikl. matematika, 5:1 (1999), 307–312 | MR | Zbl

[6] Kemer A. R., “Konechnaya baziruemost tozhdestv assotsiativnykh algebr”, Algebra i logika, 1987, no. 5, 597–641 | MR

[7] Kemer A. R., “Tozhdestva konechno porozhdennykh algebr nad beskonechnym polem”, Izv. AN SSSR. Ser. matem., 54:4 (1990), 726–753 | Zbl

[8] Grishin A. V., “O konechnoi baziruemosti sistem obobschennykh mnogochlenov”, Izv. AN SSSR. Ser. matem., 54:5 (1990), 889–927 | MR

[9] Grishin A. V., “O konechnoi baziruemosti abstraktnykh $T$-prostranstv”, Fund. i prikl. matematika, 1:3 (1995), 669–700 | MR | Zbl

[10] Grishin A. V., “Primery ne konechnoi baziruemosti $T$-prostranstv i $T$-idealov v kharakteristike 2”, Fund. i prikl. matematika, 5:1 (1999), 101–118 | MR | Zbl

[11] Belov A. Ya., “O neshpekhtovykh mnogoobraziyakh”, Fund. i prikl. matematika, 5:1 (1999), 47–66 | MR | Zbl

[12] Dzheims G., Teoriya predstavlenii simmetricheskoi gruppy, Mir, M., 1980

[13] Kherstein I., Nekommutativnye koltsa, Mir, M., 1972 | MR

[14] Atya M., Makdonald I., Vvedenie v kommutativnuyu algebru, Mir, M., 1972 | MR

[15] Razmyslov Yu. P., Vvedenie v teoriyu algebr i ikh predstavlenii, Izd-vo MGU, M., 1991

[16] Belov A. Ya., “Kontrprimery k probleme Shpekhta”, Matem. sb., 191:3 (2000), 13–24 | MR | Zbl