Asymptotic formulae for the real eigenvalues of the Sturm--Liouville problem with two turning points
Izvestiya. Mathematics , Tome 65 (2001) no. 5, pp. 1003-1016.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the asymptotic behavior of the real spectrum of the indefinite Sturm-Liouville problem for large values of the spectral parameter and prove the existence of infinitely many asymptotic terms under the condition that the coefficients of the equation are analytic.
@article{IM2_2001_65_5_a5,
     author = {S. N. Tumanov},
     title = {Asymptotic formulae for the real eigenvalues of the {Sturm--Liouville} problem with two turning points},
     journal = {Izvestiya. Mathematics },
     pages = {1003--1016},
     publisher = {mathdoc},
     volume = {65},
     number = {5},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a5/}
}
TY  - JOUR
AU  - S. N. Tumanov
TI  - Asymptotic formulae for the real eigenvalues of the Sturm--Liouville problem with two turning points
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 1003
EP  - 1016
VL  - 65
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a5/
LA  - en
ID  - IM2_2001_65_5_a5
ER  - 
%0 Journal Article
%A S. N. Tumanov
%T Asymptotic formulae for the real eigenvalues of the Sturm--Liouville problem with two turning points
%J Izvestiya. Mathematics 
%D 2001
%P 1003-1016
%V 65
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a5/
%G en
%F IM2_2001_65_5_a5
S. N. Tumanov. Asymptotic formulae for the real eigenvalues of the Sturm--Liouville problem with two turning points. Izvestiya. Mathematics , Tome 65 (2001) no. 5, pp. 1003-1016. http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a5/

[1] Atkinson F. V., Mingarelli A. B., “Asymptotic of the number of zeros and of eigenvalues of general weight Sturm–Liouville problems”, J. reine ang. Math., 375 (1987), 380–393 | MR | Zbl

[2] Dorodnitsyn A. A., “Asimptoticheskie zakony raspredeleniya sobstvennykh znachenii dlya nekotorykh osobykh vidov differentsialnykh uravnenii vtorogo poryadka”, UMN, 7:6 (1952), 3–96 | MR | Zbl

[3] Dyachenko A. V., “Asimptotika sobstvennykh znachenii indefinitnoi zadachi Shturma–Liuvillya”, Matem. zametki, 68:1 (2000), 139–143 | MR | Zbl

[4] Evgrafov M. A., Fedoryuk M. V., “Asimptotika reshenii uravneniya $w''-p(z,\lambda)w=0$ pri $\lambda\to\infty$ v kompleksnoi ploskosti”, UMN, 21:1 (1966), 3–50 | MR | Zbl

[5] Olver F., Asimptotika i spetsialnye funktsii, Nauka, M., 1990 | MR | Zbl

[6] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR | Zbl