The correspondence principle in Abelian Lagrangian geometry
Izvestiya. Mathematics , Tome 65 (2001) no. 4, pp. 823-834

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a new idea of quantization of classical mechanical systems, which uses the constructions of [2], [7] and [1]. As a first step, we verify the correspondence between the Poisson brackets on the initial symplectic manifold and on the moduli space of half-weighted Bohr–Sommerfeld Lagrangian cycles of a fixed volume.
@article{IM2_2001_65_4_a9,
     author = {N. A. Tyurin},
     title = {The correspondence principle in {Abelian} {Lagrangian} geometry},
     journal = {Izvestiya. Mathematics },
     pages = {823--834},
     publisher = {mathdoc},
     volume = {65},
     number = {4},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_4_a9/}
}
TY  - JOUR
AU  - N. A. Tyurin
TI  - The correspondence principle in Abelian Lagrangian geometry
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 823
EP  - 834
VL  - 65
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_4_a9/
LA  - en
ID  - IM2_2001_65_4_a9
ER  - 
%0 Journal Article
%A N. A. Tyurin
%T The correspondence principle in Abelian Lagrangian geometry
%J Izvestiya. Mathematics 
%D 2001
%P 823-834
%V 65
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_4_a9/
%G en
%F IM2_2001_65_4_a9
N. A. Tyurin. The correspondence principle in Abelian Lagrangian geometry. Izvestiya. Mathematics , Tome 65 (2001) no. 4, pp. 823-834. http://geodesic.mathdoc.fr/item/IM2_2001_65_4_a9/