On fractional parts of rapidly growing functions
Izvestiya. Mathematics , Tome 65 (2001) no. 4, pp. 727-748

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the behaviour of fractional parts of functions $\alpha\exp([\log^c x]\log x)$, where $\alpha$ is a real algebraic number of degree $n\geqslant 2$ and $c$ is an arbitrary positive number less than one.
@article{IM2_2001_65_4_a5,
     author = {A. A. Karatsuba},
     title = {On fractional parts of rapidly growing functions},
     journal = {Izvestiya. Mathematics },
     pages = {727--748},
     publisher = {mathdoc},
     volume = {65},
     number = {4},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_4_a5/}
}
TY  - JOUR
AU  - A. A. Karatsuba
TI  - On fractional parts of rapidly growing functions
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 727
EP  - 748
VL  - 65
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_4_a5/
LA  - en
ID  - IM2_2001_65_4_a5
ER  - 
%0 Journal Article
%A A. A. Karatsuba
%T On fractional parts of rapidly growing functions
%J Izvestiya. Mathematics 
%D 2001
%P 727-748
%V 65
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_4_a5/
%G en
%F IM2_2001_65_4_a5
A. A. Karatsuba. On fractional parts of rapidly growing functions. Izvestiya. Mathematics , Tome 65 (2001) no. 4, pp. 727-748. http://geodesic.mathdoc.fr/item/IM2_2001_65_4_a5/