A~priori estimates for the solution of the first boundary-value problem for a~class of second-order parabolic systems
Izvestiya. Mathematics , Tome 65 (2001) no. 4, pp. 705-726.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider two classes of second-order parabolic matrix-vector systems (with solutions $u\in M_{m\times 1}$, $m\geqslant 2$) that can be reduced to a single second-order parabolic equation for a scalar function $v=\langle p,u\rangle$, where $p\in M_{m\times 1}$ is a fixed stochastic constant vector. We consider the first boundary-value problem for a scalar second-order parabolic equation (with unbounded coefficients) in a domain unbounded with respect to $x$ under the assumption of strong absorption at infinity. We obtain an a priori estimate for solutions of the first boundary-value problem in the generalized Tikhonov–Täcklind classes. (The problem under investigation has at most one solution in these classes.)
@article{IM2_2001_65_4_a4,
     author = {L. I. Kamynin and B. N. Khimchenko},
     title = {A~priori estimates for the solution of the first boundary-value problem for a~class of second-order parabolic systems},
     journal = {Izvestiya. Mathematics },
     pages = {705--726},
     publisher = {mathdoc},
     volume = {65},
     number = {4},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_4_a4/}
}
TY  - JOUR
AU  - L. I. Kamynin
AU  - B. N. Khimchenko
TI  - A~priori estimates for the solution of the first boundary-value problem for a~class of second-order parabolic systems
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 705
EP  - 726
VL  - 65
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_4_a4/
LA  - en
ID  - IM2_2001_65_4_a4
ER  - 
%0 Journal Article
%A L. I. Kamynin
%A B. N. Khimchenko
%T A~priori estimates for the solution of the first boundary-value problem for a~class of second-order parabolic systems
%J Izvestiya. Mathematics 
%D 2001
%P 705-726
%V 65
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_4_a4/
%G en
%F IM2_2001_65_4_a4
L. I. Kamynin; B. N. Khimchenko. A~priori estimates for the solution of the first boundary-value problem for a~class of second-order parabolic systems. Izvestiya. Mathematics , Tome 65 (2001) no. 4, pp. 705-726. http://geodesic.mathdoc.fr/item/IM2_2001_65_4_a4/

[1] Kamynin L. I., Khimchenko B. N., “O slabom (algebraicheskom) printsipe ekstremuma dlya parabolicheskoi sistemy 2-go poryadka”, Izv. RAN. Ser. matem., 61:5 (1997), 35–62 | MR | Zbl

[2] Kamynin L. I., Khimchenko B. N., “O slabom (stokhasticheskom) printsipe ekstremuma dlya odnogo klassa parabolicheskikh sistem 2-go poryadka”, Vestn. RUDN, 3:1 (1996), 58–71 | MR | Zbl

[3] Kamynin L. I., Khimchenko B. N., “Ob izotropnoi teorii edinstvennosti resheniya zadachi Koshi dlya parabolicheskogo uravneniya vtorogo poryadka”, Differents. uravn., 24:1 (1988), 73–85 | MR | Zbl

[4] Kamynin L. I., Khimchenko B. N., “O probleme Tikhonova–Petrovskogo dlya parabolicheskikh uravnenii 2-go poryadka”, Sib. matem. zhurn., 22:5 (1981), 78–109 | MR | Zbl

[5] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR

[6] Ilin A. M., Kalashnikov A. S., Oleinik O. A., “Lineinye uravneniya vtorogo poryadka parabolicheskogo tipa”, UMN, 17:3 (1961), 3–146

[7] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[8] Fridman A., Uravneniya s chastnymi proizvodnymi parabolicheskogo tipa, Mir, M., 1968

[9] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1972 | MR

[10] Kamynin L. I., Khimchenko B. N., “Ob odnostoronnikh otsenkakh reshenii zadachi Koshi dlya parabolicheskikh uravnenii vtorogo poryadka v klassakh bystro rastuschikh funktsii, I”, Differents. uravn., 30:5 (1994), 838–846 | MR | Zbl

[11] Kamynin L. I., “Odnostoronnie otsenki resheniya I kraevoi zadachi v neogranichennoi oblasti dlya silno dissipativnogo parabolicheskogo uravneniya 2-go poryadka”, Sib. matem. zhurn., 35:1 (1994), 105–117 | MR | Zbl