Dual representation of superlinear functionals and its applications in function theory.~I
Izvestiya. Mathematics , Tome 65 (2001) no. 4, pp. 835-852.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish conditions under which there is a dual representation of a superlinear functional on a projective limit of vector lattices. These results will enable us, in the second part of this paper, to pose new dual problems for weighted spaces of holomorphic functions of one or several variables defined on a domain in $\mathbb C^n$, namely, the problems of non-triviality of a given space, description of null sets, description of sets of (non-)uniqueness, existence of holomorphic functions of certain classes that play the role of multipliers “suppressing” the growth of a given holomorphic function, and representation of meromorphic functions by quotients of holomorphic functions from a given space.
@article{IM2_2001_65_4_a10,
     author = {B. N. Khabibullin},
     title = {Dual representation of superlinear functionals and its applications in function {theory.~I}},
     journal = {Izvestiya. Mathematics },
     pages = {835--852},
     publisher = {mathdoc},
     volume = {65},
     number = {4},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_4_a10/}
}
TY  - JOUR
AU  - B. N. Khabibullin
TI  - Dual representation of superlinear functionals and its applications in function theory.~I
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 835
EP  - 852
VL  - 65
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_4_a10/
LA  - en
ID  - IM2_2001_65_4_a10
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%T Dual representation of superlinear functionals and its applications in function theory.~I
%J Izvestiya. Mathematics 
%D 2001
%P 835-852
%V 65
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_4_a10/
%G en
%F IM2_2001_65_4_a10
B. N. Khabibullin. Dual representation of superlinear functionals and its applications in function theory.~I. Izvestiya. Mathematics , Tome 65 (2001) no. 4, pp. 835-852. http://geodesic.mathdoc.fr/item/IM2_2001_65_4_a10/

[1] Ronkin L. I., “Tselye funktsii”, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 9, VINITI, M., 1986, 5–36 | MR

[2] Kheiman U., Meromorfnye funktsii, Mir, M., 1966 | MR

[3] Beurling A., Malliavin P., “On Fourier transforms of measures with compact support”, Acta Math., 107:3–4 (1962), 291–309 | DOI | MR | Zbl

[4] Koosis P., The logarithmic integral, V. II, Cambridge University Press, Cambridge, 1992 | MR | Zbl

[5] Khabibullin B. N., “O roste tselykh funktsii eksponentsialnogo tipa vdol mnimoi osi”, DAN SSSR, 302:2 (1988), 270–273 | MR

[6] Akilov G. P., Kutateladze S. S., Uporyadochennye vektornye prostranstva, Nauka, Novosibirsk, 1978 | MR | Zbl

[7] Rubinov A. M., “Sublineinye operatory i ikh primeneniya”, UMN, 32:4 (1977), 113–174 | MR | Zbl

[8] Hörmander L., “Sur la fonction d'appui des ensembles convexes dans une espace lokalement convexe”, Arkiv för Math., 3:2 (1955), 180–186 | MR

[9] Kutateladze S. S., Rubinov A. M., Dvoistvennost Minkovskogo i ee prilozheniya, Nauka, Novosibirsk, 1976 | MR

[10] Feldman M. M., “O sublineinykh operatorakh, opredelennykh na konuse”, Sib. matem. zhurn., 16:6 (1975), 1308–1321 | MR | Zbl

[11] Gamelin T., Ravnomernye algebry, Mir, M., 1973 | Zbl

[12] Felps R., Lektsii o teoremakh Shoke, Mir, M., 1968

[13] Meier P.-A., Veroyatnost i potentsialy, Mir, M., 1973

[14] Koosis P., “La plus petite majorante surharmonique et son rapport avec l'existence des functions entieres de type exponentiel jouant le rôle de multiplicateurs”, Ann. Inst. Fourier, 33:1 (1983), 67–107 | MR | Zbl

[15] Koosis P., Leçons sur le Théorème de Beurling et Malliavin, Université McGill, Montréal, 1996 | MR

[16] Khabibullin B. N., “Naimenshaya plyurisupergarmonicheskaya mazhoranta i multiplikatory tselykh funktsii, I”, Sib. matem. zhurn., 33:1 (1992), 173–178 | MR

[17] Khabibullin B. N., “Teorema o naimenshei mazhorante i ee primeneniya. I: Tselye i meromorfnye funktsii”, Izv. RAN. Ser. matem., 57:1 (1993), 129–146 | Zbl

[18] Bu S., Schachermayer W., “Approximation of Jensen measures by image measures under holomorphic functions and applications”, Trans. Amer. Math. Soc., 331:2 (1992), 585–608 | DOI | MR | Zbl

[19] Poletsky E. A., “Plurisubharmonic Functions as Solution of Variotional Problems”, Proceedings of Symposia in Pure Math. Part 1, 52, 1991, 163–171 | MR | Zbl

[20] Poletsky E. A., “Holomorphic Currents”, Indiana U. Math. J., 42:1 (1993), 85–144 | DOI | MR | Zbl

[21] Burbaki N., Mery, integrirovanie mer, Nauka, M., 1967 | MR

[22] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR

[23] Bukur I., Delyanu A., Vvedenie v teoriyu kategorii i funktorov, Mir, M., 1972 | MR

[24] Sebashtyan-i-Silva Zh., “O nekotorykh klassakh lokalno vypuklykh prostranstv, vazhnykh v prilozheniyakh”, Matematika, I:1 (1957), 60–77 | MR

[25] Fuchssteiner B., Lusky W., Convex cones, North-Holland math. studies. Notas de Math., 82, Amsterdam, 1981 | MR

[26] Rudin U., Teoriya funktsii v edinichnom share iz $\mathbb C^n$, Mir, M., 1984 | MR | Zbl