On uniqueness classes of solutions of the first mixed problem for a~quasi-linear second-order parabolic system in an unbounded domain
Izvestiya. Mathematics , Tome 65 (2001) no. 3, pp. 469-484.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a quasi-linear parabolic system of divergence type having an energy inequality and satisfying monotonicity conditions. For such a system, the first mixed problem is considered in a cylindrical domain $\{t>0\}\times\Omega$ that is unbounded with respect to the spatial variables. Generally, the initial vector function $\varphi$ in the problem may not belong to $\mathbb L_2(\Omega)$. A uniqueness class close to that of Täcklind [3] is established for the solutions of this problem. Moreover, a uniqueness theorem is proved for a solution belonging to this class and having an initial vector function increasing at infinity.
@article{IM2_2001_65_3_a2,
     author = {L. M. Kozhevnikova},
     title = {On uniqueness classes of solutions of the first mixed problem for a~quasi-linear second-order parabolic system in an unbounded domain},
     journal = {Izvestiya. Mathematics },
     pages = {469--484},
     publisher = {mathdoc},
     volume = {65},
     number = {3},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a2/}
}
TY  - JOUR
AU  - L. M. Kozhevnikova
TI  - On uniqueness classes of solutions of the first mixed problem for a~quasi-linear second-order parabolic system in an unbounded domain
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 469
EP  - 484
VL  - 65
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a2/
LA  - en
ID  - IM2_2001_65_3_a2
ER  - 
%0 Journal Article
%A L. M. Kozhevnikova
%T On uniqueness classes of solutions of the first mixed problem for a~quasi-linear second-order parabolic system in an unbounded domain
%J Izvestiya. Mathematics 
%D 2001
%P 469-484
%V 65
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a2/
%G en
%F IM2_2001_65_3_a2
L. M. Kozhevnikova. On uniqueness classes of solutions of the first mixed problem for a~quasi-linear second-order parabolic system in an unbounded domain. Izvestiya. Mathematics , Tome 65 (2001) no. 3, pp. 469-484. http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a2/

[1] Holmgren E., “Sur les solutions quasianalytiques d'l'equations de la chaleur”, Arkiv för mat., astr., och fys., 18:9 (1924), 64–95

[2] Tikhonov A. N., “Teoremy edinstvennosti dlya uravneniya teploprovodnosti”, Matem. sb., 42(84) (1935), 199–216

[3] Täcklind S., “Sur les class quasianalytiques des solutions des equations aux deriveés partielles du type parabolique”, Nova Acta Reg. Soc. Schi. Uppsaliensis. Ser. 4, 10:3 (1936), 3–55

[4] Ladyzhenskaya O. A., “O edinstvennosti resheniya zadachi Koshi dlya lineinogo parabolicheskogo uravneniya”, Matem. sb., 27(69) (1950), 175–184 | MR | Zbl

[5] Eidelman S. D., “Otsenki reshenii parabolicheskikh sistem i nekotorye ikh primeneniya”, Matem. sb., 33 (1954), 57–72 | MR

[6] Oleinik O. A., Radkevich E. V., “Metod vvedeniya parametra dlya issledovaniya evolyutsionnykh uravnenii”, UMN, 33:5 (1987), 7–76 | MR

[7] Landis E. M., “O zavisimosti klassov edinstvennosti resheniya vtoroi nachalno-kraevoi zadachi dlya uravneniya teploprovodnosti v neogranichennoi oblasti ot geometrii oblasti”, DAN SSSR, 275 (1984), 790–793 | MR | Zbl

[8] Oleinik O. A., Iosifyan G. A., “Analog printsipa Sen-Venana i edinstvennost reshenii kraevykh zadach v neogranichennykh oblastyakh dlya parabolicheskikh uravnenii”, UMN, 31:6 (1976), 142–166 | MR | Zbl

[9] Gagnidze A. G., “O klassakh edinstvennosti reshenii kraevykh zadach dlya parabolicheskikh uravnenii vtorogo poryadka v neogranichennoi oblasti”, UMN, 39:6 (1984), 193–194 | MR | Zbl

[10] Gagnidze A. G., “O edinstvennosti resheniya zadachi Koshi dlya parabolicheskogo uravneniya s rastuschimi koeffitsientami”, Soobsch. AN GSSR, 131:2 (1988), 241–243 | MR | Zbl

[11] Gagnidze A. G., “O edinstvennosti resheniya zadachi Koshi dlya parabolicheskikh uravnenii vysokogo poryadka s neogranichennymi koeffitsientami”, Soobsch. AN GSSR, 134:3 (1989), 469–471 | MR | Zbl

[12] Maksimova N. O., “O edinstvennosti reshenii zadachi Koshi i kraevykh zadach v neogranichennykh oblastyakh dlya nekotorykh klassov kvazilineinykh vyrozhdayuschikhsya parabolicheskikh uravnenii”, Tr. seminara im. I. G. Petrovskogo, 1985, no. 11, 12–31

[13] Guschin A. K., “O ravnomernoi stabilizatsii reshenii vtoroi smeshannoi zadachi dlya parabolicheskogo uravneniya”, Matem. sb., 119(161) (1982), 451–508 | MR

[14] Mukminov F. Kh., “O ravnomernoi stabilizatsii reshenii pervoi smeshannoi zadachi dlya parabolicheskogo uravneniya”, Matem. sb., 181:11 (1990), 1486–1509 | MR

[15] Ladyzhenskaya O. A, Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967