The index of Fourier integral operators on manifolds with conical singularities
Izvestiya. Mathematics , Tome 65 (2001) no. 2, pp. 329-355

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe homogeneous canonical transformations of the cotangent bundle of a manifold with conical singular points and compute the index of an elliptic Fourier integral operator obtained by the quantization of such a transformation. The answer involves the index of an elliptic Fourier integral operator on a smooth manifold and the residues of the conormal symbol.
@article{IM2_2001_65_2_a3,
     author = {V. E. Nazaikinskii and B. Schulze and B. Yu. Sternin},
     title = {The index of {Fourier} integral operators on manifolds with conical singularities},
     journal = {Izvestiya. Mathematics },
     pages = {329--355},
     publisher = {mathdoc},
     volume = {65},
     number = {2},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a3/}
}
TY  - JOUR
AU  - V. E. Nazaikinskii
AU  - B. Schulze
AU  - B. Yu. Sternin
TI  - The index of Fourier integral operators on manifolds with conical singularities
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 329
EP  - 355
VL  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a3/
LA  - en
ID  - IM2_2001_65_2_a3
ER  - 
%0 Journal Article
%A V. E. Nazaikinskii
%A B. Schulze
%A B. Yu. Sternin
%T The index of Fourier integral operators on manifolds with conical singularities
%J Izvestiya. Mathematics 
%D 2001
%P 329-355
%V 65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a3/
%G en
%F IM2_2001_65_2_a3
V. E. Nazaikinskii; B. Schulze; B. Yu. Sternin. The index of Fourier integral operators on manifolds with conical singularities. Izvestiya. Mathematics , Tome 65 (2001) no. 2, pp. 329-355. http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a3/