The index of Fourier integral operators on manifolds with conical singularities
Izvestiya. Mathematics , Tome 65 (2001) no. 2, pp. 329-355.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe homogeneous canonical transformations of the cotangent bundle of a manifold with conical singular points and compute the index of an elliptic Fourier integral operator obtained by the quantization of such a transformation. The answer involves the index of an elliptic Fourier integral operator on a smooth manifold and the residues of the conormal symbol.
@article{IM2_2001_65_2_a3,
     author = {V. E. Nazaikinskii and B. Schulze and B. Yu. Sternin},
     title = {The index of {Fourier} integral operators on manifolds with conical singularities},
     journal = {Izvestiya. Mathematics },
     pages = {329--355},
     publisher = {mathdoc},
     volume = {65},
     number = {2},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a3/}
}
TY  - JOUR
AU  - V. E. Nazaikinskii
AU  - B. Schulze
AU  - B. Yu. Sternin
TI  - The index of Fourier integral operators on manifolds with conical singularities
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 329
EP  - 355
VL  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a3/
LA  - en
ID  - IM2_2001_65_2_a3
ER  - 
%0 Journal Article
%A V. E. Nazaikinskii
%A B. Schulze
%A B. Yu. Sternin
%T The index of Fourier integral operators on manifolds with conical singularities
%J Izvestiya. Mathematics 
%D 2001
%P 329-355
%V 65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a3/
%G en
%F IM2_2001_65_2_a3
V. E. Nazaikinskii; B. Schulze; B. Yu. Sternin. The index of Fourier integral operators on manifolds with conical singularities. Izvestiya. Mathematics , Tome 65 (2001) no. 2, pp. 329-355. http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a3/

[1] Weinstein A., “Fourier integral operators, quantization, and the spectrum of a riemannian manifold”, Géométrie Symplectique et Physique Mathématique, Colloque Internationale de Centre National de la Recherche Scientifique, 237, 1976, 289–298 | MR

[2] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR

[3] Guillemin V. W., “Toeplitz operators in $n$-dimensions”, Integral Equations and Operator Theory, 7 (1984), 145–205 | DOI | MR | Zbl

[4] Epstein C., Melrose R., Shrinking tubes and the $\delta $-Neumann problem, Preprint, 1997 | MR

[5] Weinstein A., “Some questions about the index of quantized contact transformations”, RIMS Kôkûryuku, 104 (1997), 1–14 | MR

[6] Epstein C., Melrose R., “Contact degree and the index of Fourier integral operators”, Math. Res. Lett., 5:3 (1998), 363–381 | MR | Zbl

[7] Schulze B.-W., Pseudodifferential Operators on Manifolds with Singularities, North-Holland, Amsterdam, 1991 | Zbl

[8] Nazaikinskii V., Schulze B.-W., Sternin B., The Index of Quantized Contact Transformations on Manifolds with Conical Singularities, Preprint No 98/16, August 1998, Univ. Potsdam, Institut für Mathematik, Potsdam | MR

[9] Nazaikinskii V. E., Sternin B. Yu., Shultse B.-V., “Indeks kvantovannykh kontaktnykh preobrazovanii na mnogoobraziyakh s konicheskimi osobennostyami”, Dokl. RAN, 368:5 (1999), 598–600 | MR | Zbl

[10] Schulze B.-W., Sternin B., Shatalov V., Differential Equations on Singular Manifolds. Semiclassical Theory and Operator Algebras, Mathematics Topics, 15, Wiley–VCH Verlag, Berlin–N. Y., 1998 | MR

[11] Nazaikinskii V., Schulze B.-W., Sternin B., Shatalov V., Quantization of Symplectic Transformations on Manifolds with Conical Singularities, Preprint No 97/23, July 1997, Univ. Potsdam, Institut für Mathematik, Potsdam

[12] Melrose R., “Transformation of boundary problems”, Acta Math., 147 (1981), 149–236 | DOI | MR | Zbl

[13] Nazaikinskii V., Sternin B., Shatalov V., Contact Geometry and Linear Differential Equations, De Gruyter Expositions in Mathematics, Walter de Gruyter Publishers, Berlin–N. Y., 1992 | MR

[14] Mishchenko A., Shatalov V., Sternin B., Lagrangian Manifolds and the Maslov Operator, Springer-Verlag, Berlin–Heidelberg, 1990 | MR

[15] Maslov V. P., Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo MGU, M., 1965

[16] Nazaikinskii V. E., Oshmyan V. G., Sternin B. Yu., Shatalov V. E., “Integralnye operatory Fure i kanonicheskii operator”, UMN, 36:2 (1981), 81–140 | MR | Zbl

[17] Schulze B.-W., Sternin B., Shatalov V., “Structure rings of singularities and differential equations”, Differential Equations, Asymptotic Analysis, and Mathematical Physics, Mathematical Research, 100, Akademie Verlag, Berlin, 1996, 325–347 | MR

[18] Schulze B.-W., Boundary Value Problems and Singular Pseudo-Differential Operators, J. Wiley, Chichester, 1997 | MR | Zbl

[19] Schulze B.-W., Sternin B., Shatalov V., “On the index of differential operators on manifolds with conical singularities”, Annals of Global Analysis and Geometry, 16:2 (1998), 141–172 | DOI | MR | Zbl

[20] Fedosov B. V., Deformation Quantization and Index Theory, Mathematical Topics, 9, Akademie Verlag, Berlin, 1996 | MR

[21] Nazaikinskii V., Schulze B.-W., Sternin B., Shatalov V., “The Atiyah–Bott–Lefschetz fixed point theorem for manifolds with conical singularities”, Annals of Global Analysis and Geometry, 17:5 (1999), 409–439 | DOI | MR | Zbl

[22] Nazaikinskii V., Sternin B., Shatalov V., Methods of Noncommutative Analysis. Theory and Applications, Mathematical Studies, Walter de Gruyter Publishers, Berlin–N. Y., 1995 | MR | Zbl

[23] Maslov V. P., Operatornye metody, Nauka, M., 1973 | MR