On solutions of non-autonomous ordinary differential equations
Izvestiya. Mathematics , Tome 65 (2001) no. 2, pp. 285-327

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the solutions of $m$th-order $m\geqslant 1$ differential equations of the form $$ w^{(m)}=Q(r,w,\dots,w^{(m-1)}), $$ where $Q$ belongs to the Carathéodory class $K_{\mathrm{loc}}([a,\infty)\times\mathbb R^m)$, $a>0$.
@article{IM2_2001_65_2_a2,
     author = {A. A. Kon'kov},
     title = {On solutions of non-autonomous ordinary differential equations},
     journal = {Izvestiya. Mathematics },
     pages = {285--327},
     publisher = {mathdoc},
     volume = {65},
     number = {2},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a2/}
}
TY  - JOUR
AU  - A. A. Kon'kov
TI  - On solutions of non-autonomous ordinary differential equations
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 285
EP  - 327
VL  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a2/
LA  - en
ID  - IM2_2001_65_2_a2
ER  - 
%0 Journal Article
%A A. A. Kon'kov
%T On solutions of non-autonomous ordinary differential equations
%J Izvestiya. Mathematics 
%D 2001
%P 285-327
%V 65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a2/
%G en
%F IM2_2001_65_2_a2
A. A. Kon'kov. On solutions of non-autonomous ordinary differential equations. Izvestiya. Mathematics , Tome 65 (2001) no. 2, pp. 285-327. http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a2/