Entropy solutions of the Dirichlet problem for a~class of non-linear elliptic fourth-order equations with right-hand sides in~$L^1$
Izvestiya. Mathematics , Tome 65 (2001) no. 2, pp. 231-283.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we introduce and study the notion of an entropy solution of the Dirichlet problem for a class of non-linear elliptic fourth-order equations whose right-hand sides admit arbitrary growth with respect to the variable corresponding to the unknown function and belong to the space $L^1$ for each fixed value of this variable. We prove the existence and uniqueness of an entropy solution. We establish the existence of so-called $H$-solutions and $W$-solutions of the problem and prove that the entropy solutions belong to certain Sobolev spaces.
@article{IM2_2001_65_2_a1,
     author = {A. A. Kovalevsky},
     title = {Entropy solutions of the {Dirichlet} problem for a~class of non-linear elliptic fourth-order equations with right-hand sides in~$L^1$},
     journal = {Izvestiya. Mathematics },
     pages = {231--283},
     publisher = {mathdoc},
     volume = {65},
     number = {2},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a1/}
}
TY  - JOUR
AU  - A. A. Kovalevsky
TI  - Entropy solutions of the Dirichlet problem for a~class of non-linear elliptic fourth-order equations with right-hand sides in~$L^1$
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 231
EP  - 283
VL  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a1/
LA  - en
ID  - IM2_2001_65_2_a1
ER  - 
%0 Journal Article
%A A. A. Kovalevsky
%T Entropy solutions of the Dirichlet problem for a~class of non-linear elliptic fourth-order equations with right-hand sides in~$L^1$
%J Izvestiya. Mathematics 
%D 2001
%P 231-283
%V 65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a1/
%G en
%F IM2_2001_65_2_a1
A. A. Kovalevsky. Entropy solutions of the Dirichlet problem for a~class of non-linear elliptic fourth-order equations with right-hand sides in~$L^1$. Izvestiya. Mathematics , Tome 65 (2001) no. 2, pp. 231-283. http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a1/

[1] Lions J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod; Gauthier-Villars, Paris, 1969 | MR | Zbl

[2] Bénilan Ph., “On the $p$-Laplacian in $L^1$”, Conference at the Analysis Seminar, Univ. Wisconsin at Madison, Dept. of Math., 1987

[3] Boccardo L., Gallouët Th., Vazquez J. L., “Nonlinear elliptic equations in $\mathbb R^N$ without growth restrictions on the data”, J. Diff. Eqns., 105 (1993), 334–363 | DOI | MR | Zbl

[4] Bénilan Ph., Boccardo L., Gallouët Th., Gariepy R., Pierre M., Vazquez J. L., “An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22 (1995), 241–273 | MR | Zbl

[5] Rakotoson J. M., “Resolution of the critical cases for problems with $L^1$-data”, Asymptotic Analysis, 6 (1993), 229–246 | MR

[6] Boccardo L., Gallouët Th., “Non-linear elliptic and parabolic equations involving measure data”, J. Funct. Anal., 87 (1989), 149–169 | DOI | MR | Zbl

[7] Boccardo L., Gallouët Th., “Non-linear elliptic equations with right-hand side measures”, Comm. Partial Diff. Eqns., 17 (1992), 641–655 | MR | Zbl

[8] Rakotoson J. M., “Generalized solutions in a new type of sets for problems with measures as data”, Diff. Integral Eqns., 6 (1993), 27–36 | MR | Zbl

[9] Boccardo L., Diaz J. I., Giachetti D., Murat F., “Existence of a solution for a weaker form of a non linear elliptic equation”, Recent advances in nonlinear elliptic and parabolic problems, Proceedings (Nancy, 1988), Pitman Res. Notes Math. Ser., 208, 1989, 229–246 | MR | Zbl

[10] Boccardo L., Diaz J. I., Giachetti D., Murat F., “Existence and regularity of renormalized solutions for some elliptic problems involving derivatives of nonlinear terms”, J. Diff. Eqns., 106 (1993), 215–237 | DOI | MR | Zbl

[11] Murat F., Soluciones renormalizadas de EDP elipticas no lineales, Publ. Laboratoire d'Analyse Numérique, R 93023, Univ. Paris 6, 1993

[12] Skrypnik I. V., “O kvazilineinykh ellipticheskikh uravneniyakh vysshego poryadka s nepreryvnymi obobschennymi resheniyami”, Differents. uravn., 14 (1978), 1104–1118 | MR | Zbl

[13] Kovalevsky A., “Entropy solutions of Dirichlet problem for a class of nonlinear elliptic fourth order equations with $L^1$-data”, Nonlinear Boundary Value Problems, 1999, no. 9, 46–54 | Zbl

[14] Gilbarg D., Trudinger N. S., Elliptic partial differential equations of second order, Springer-Verlag, Berlin, 1983 | MR | Zbl