Entropy solutions of the Dirichlet problem for a~class of non-linear elliptic fourth-order equations with right-hand sides in~$L^1$
Izvestiya. Mathematics , Tome 65 (2001) no. 2, pp. 231-283

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we introduce and study the notion of an entropy solution of the Dirichlet problem for a class of non-linear elliptic fourth-order equations whose right-hand sides admit arbitrary growth with respect to the variable corresponding to the unknown function and belong to the space $L^1$ for each fixed value of this variable. We prove the existence and uniqueness of an entropy solution. We establish the existence of so-called $H$-solutions and $W$-solutions of the problem and prove that the entropy solutions belong to certain Sobolev spaces.
@article{IM2_2001_65_2_a1,
     author = {A. A. Kovalevsky},
     title = {Entropy solutions of the {Dirichlet} problem for a~class of non-linear elliptic fourth-order equations with right-hand sides in~$L^1$},
     journal = {Izvestiya. Mathematics },
     pages = {231--283},
     publisher = {mathdoc},
     volume = {65},
     number = {2},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a1/}
}
TY  - JOUR
AU  - A. A. Kovalevsky
TI  - Entropy solutions of the Dirichlet problem for a~class of non-linear elliptic fourth-order equations with right-hand sides in~$L^1$
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 231
EP  - 283
VL  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a1/
LA  - en
ID  - IM2_2001_65_2_a1
ER  - 
%0 Journal Article
%A A. A. Kovalevsky
%T Entropy solutions of the Dirichlet problem for a~class of non-linear elliptic fourth-order equations with right-hand sides in~$L^1$
%J Izvestiya. Mathematics 
%D 2001
%P 231-283
%V 65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a1/
%G en
%F IM2_2001_65_2_a1
A. A. Kovalevsky. Entropy solutions of the Dirichlet problem for a~class of non-linear elliptic fourth-order equations with right-hand sides in~$L^1$. Izvestiya. Mathematics , Tome 65 (2001) no. 2, pp. 231-283. http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a1/