A~definitive version of the local two-radii theorem on hyperbolic spaces
Izvestiya. Mathematics , Tome 65 (2001) no. 2, pp. 207-229

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with various classes of functions that have zero integrals over all balls of a fixed radius in hyperbolic spaces. We describe these classes in terms of series in special functions and prove a uniqueness theorem. These results enabled us to obtain a definitive version of the local two-radii theorem.
@article{IM2_2001_65_2_a0,
     author = {V. V. Volchkov},
     title = {A~definitive version of the local two-radii theorem on hyperbolic spaces},
     journal = {Izvestiya. Mathematics },
     pages = {207--229},
     publisher = {mathdoc},
     volume = {65},
     number = {2},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a0/}
}
TY  - JOUR
AU  - V. V. Volchkov
TI  - A~definitive version of the local two-radii theorem on hyperbolic spaces
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 207
EP  - 229
VL  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a0/
LA  - en
ID  - IM2_2001_65_2_a0
ER  - 
%0 Journal Article
%A V. V. Volchkov
%T A~definitive version of the local two-radii theorem on hyperbolic spaces
%J Izvestiya. Mathematics 
%D 2001
%P 207-229
%V 65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a0/
%G en
%F IM2_2001_65_2_a0
V. V. Volchkov. A~definitive version of the local two-radii theorem on hyperbolic spaces. Izvestiya. Mathematics , Tome 65 (2001) no. 2, pp. 207-229. http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a0/