A~definitive version of the local two-radii theorem on hyperbolic spaces
Izvestiya. Mathematics , Tome 65 (2001) no. 2, pp. 207-229.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with various classes of functions that have zero integrals over all balls of a fixed radius in hyperbolic spaces. We describe these classes in terms of series in special functions and prove a uniqueness theorem. These results enabled us to obtain a definitive version of the local two-radii theorem.
@article{IM2_2001_65_2_a0,
     author = {V. V. Volchkov},
     title = {A~definitive version of the local two-radii theorem on hyperbolic spaces},
     journal = {Izvestiya. Mathematics },
     pages = {207--229},
     publisher = {mathdoc},
     volume = {65},
     number = {2},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a0/}
}
TY  - JOUR
AU  - V. V. Volchkov
TI  - A~definitive version of the local two-radii theorem on hyperbolic spaces
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 207
EP  - 229
VL  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a0/
LA  - en
ID  - IM2_2001_65_2_a0
ER  - 
%0 Journal Article
%A V. V. Volchkov
%T A~definitive version of the local two-radii theorem on hyperbolic spaces
%J Izvestiya. Mathematics 
%D 2001
%P 207-229
%V 65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a0/
%G en
%F IM2_2001_65_2_a0
V. V. Volchkov. A~definitive version of the local two-radii theorem on hyperbolic spaces. Izvestiya. Mathematics , Tome 65 (2001) no. 2, pp. 207-229. http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a0/

[1] Alfors L., Preobrazovaniya Mëbiusa v mnogomernom prostranstve, Mir, M., 1986 | MR

[2] Berenstein C. A., Zalcman L., “Pompeiu's problem on spaces of constant curvature”, J. Analyse Math., 30 (1976), 113–130 | DOI | MR | Zbl

[3] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Nauka, M., 1965

[4] Zalcman L., “Analyticity and the Pompeiu problem”, Arch. Rat. Mech. Anal., 47 (1972), 237–254 | DOI | MR | Zbl

[5] Berenstein C. A., Gay R., “A local version of the two-circles theorem”, Israel J. Math., 55 (1986), 267–288 | DOI | MR | Zbl

[6] Berenstein C. A., Gay R., “Le probleme de Pompeiu locale”, J. Analyse Math., 52 (1989), 133–166 | DOI | MR | Zbl

[7] Berenstein C. A., Gay R., Yger A., “Inversion of the local Pompeiu transform”, J. Analyse Math., 54 (1990), 259–287 | DOI | MR | Zbl

[8] Berenstein K. A., Struppa D., “Kompleksnyi analiz i uravneniya v svertkakh”, Itogi nauki i tekhn. Sovrem. probl. matem. Fundam. napravleniya, 54, VINITI, M., 1989, 5–111 | MR

[9] Zalcman L., “A bibliographic survey of the Pompeiu problem”, Approximation by solutions of partial differential equations, eds. B. Fuglede et al., Kluwer Acad. Publ., 1992, 185–194 | MR

[10] Volchkov V. V., “Okonchatelnyi variant lokalnoi teoremy o dvukh radiusakh”, Matem. sb., 186:6 (1995), 15–34 | MR | Zbl

[11] Volchkov V. V., “Novye teoremy o dvukh radiusakh v teorii garmonicheskikh funktsii”, Izv. RAN. Ser. matem., 58:1 (1994), 182–194 | MR | Zbl

[12] Volchkov V. V., “Reshenie problemy nositelya dlya nekotorykh klassov funktsii”, Matem. sb., 188:9 (1997), 13–30 | MR | Zbl

[13] Volchkov V. V., “Novye teoremy o srednem dlya reshenii uravneniya Gelmgoltsa”, Matem. sb., 184:7 (1993), 71–78 | MR | Zbl

[14] Volchkov V. V., “O mnozhestvakh in'ektivnosti preobrazovaniya Radona na sferakh”, Izv. RAN. Ser. matem., 63:3 (1999), 63–76 | MR

[15] Volchkov V. V., “Morera type theorems on the unit disk”, Anal. Math., 20 (1994), 49–63 | DOI | MR | Zbl

[16] Volchkov V. V., “Teoremy edinstvennosti dlya nekotorykh klassov funktsii s nulevymi sfericheskimi srednimi”, Matem. zametki, 62:1 (1997), 59–65 | MR | Zbl

[17] Volchkov V. V., “Novye teoremy o srednem dlya polianaliticheskikh funktsii”, Matem. zametki, 56:3 (1994), 20–28 | MR | Zbl

[18] Volchkov V. V., “Okonchatelnyi variant teoremy o srednem v teorii garmonicheskikh funktsii”, Matem. zametki, 59:3 (1996), 351–358 | MR | Zbl

[19] Volchkov V. V., “Ob odnoi probleme Zaltsmana i ee obobscheniyakh”, Matem. zametki, 53:2 (1993), 30–36 | MR | Zbl

[20] El Harchaoui M., “Inversion de la transformation de Pompéiu dans l'espace hyperbolique”, Publ. Mat., 37 (1993), 133–164 | MR | Zbl

[21] El Harchaoui M., “Inversion de la transformation de Pompéiu locale dans les espaces hyperboliques réel et complexe (Cas de deux boules)”, J. Analyse Math., 67 (1995), 1–37 | DOI | MR | Zbl

[22] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl

[23] Vilenkin N. Ya., Spetsialnye funktsii i teoriya predstavlenii grupp, 2-e izd., Nauka, M., 1991 | MR | Zbl

[24] Khelgason S., Gruppy i geometricheskii analiz, Mir, M., 1987 | MR

[25] Riekstynsh E. Ya., Asimptoticheskie razlozheniya integralov, T. 1, Zinatne, Riga, 1974 | Zbl

[26] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[27] Ion F., Ploskie volny i sfericheskie srednie v primenenii k differentsialnym uravneniyam s chastnymi proizvodnymi, IL, M., 1958

[28] Smith I. D., “Harmonic analysis of scalar and vector fields in $\mathbb R^n$”, Proc. Cambridge Philos. Soc., 72 (1972), 403–416 | DOI | MR | Zbl

[29] Sitaram A., “Fourier analysis and determining sets for Radon measures on $\mathbb R^n$”, Illinois J. Math., 28 (1984), 339–347 | MR | Zbl

[30] Volchkov V. V., “Ekstremalnye varianty problemy Pompeiyu”, Matem. zametki, 59:5 (1996), 671–680 | MR | Zbl

[31] Volchkov V. V., “Teoremy edinstvennosti dlya kratnykh lakunarnykh trigonometricheskikh ryadov”, Matem. zametki, 51:6 (1992), 27–31 | MR | Zbl