The subdifferential and the directional derivatives of the maximum of a~family of convex functions.~II
Izvestiya. Mathematics , Tome 65 (2001) no. 1, pp. 99-121
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper deals with calculating the directional derivatives and the subdifferential of the maximum of convex functions with no compactness conditions on the indexing set. We apply our results to the problems of minimax theory in which the Lagrange function is not assumed to be concave. We also apply these results to the duality theory of non-convex extremum problems, and strengthen earlier results of Yakubovich, Matveev and the author. We illustrate our results by investigating a problem of optimal design of experiments.
@article{IM2_2001_65_1_a6,
author = {V. N. Solov'ev},
title = {The subdifferential and the directional derivatives of the maximum of a~family of convex {functions.~II}},
journal = {Izvestiya. Mathematics },
pages = {99--121},
publisher = {mathdoc},
volume = {65},
number = {1},
year = {2001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a6/}
}
TY - JOUR AU - V. N. Solov'ev TI - The subdifferential and the directional derivatives of the maximum of a~family of convex functions.~II JO - Izvestiya. Mathematics PY - 2001 SP - 99 EP - 121 VL - 65 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a6/ LA - en ID - IM2_2001_65_1_a6 ER -
V. N. Solov'ev. The subdifferential and the directional derivatives of the maximum of a~family of convex functions.~II. Izvestiya. Mathematics , Tome 65 (2001) no. 1, pp. 99-121. http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a6/