An asymptotic formula for the Taylor coefficients of the function~$\xi(s)$
Izvestiya. Mathematics , Tome 65 (2001) no. 1, pp. 85-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

An asymptotic formula is derived for the Taylor coefficients of the function $$ \xi(s)=\frac12s(s-1)\pi^{-s/2}\Gamma\biggl(\frac s2\biggr)\zeta(s) $$ at the point $s=1/2$.
@article{IM2_2001_65_1_a5,
     author = {L. D. Pustyl'nikov},
     title = {An asymptotic formula for the {Taylor} coefficients of the function~$\xi(s)$},
     journal = {Izvestiya. Mathematics },
     pages = {85--98},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a5/}
}
TY  - JOUR
AU  - L. D. Pustyl'nikov
TI  - An asymptotic formula for the Taylor coefficients of the function~$\xi(s)$
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 85
EP  - 98
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a5/
LA  - en
ID  - IM2_2001_65_1_a5
ER  - 
%0 Journal Article
%A L. D. Pustyl'nikov
%T An asymptotic formula for the Taylor coefficients of the function~$\xi(s)$
%J Izvestiya. Mathematics 
%D 2001
%P 85-98
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a5/
%G en
%F IM2_2001_65_1_a5
L. D. Pustyl'nikov. An asymptotic formula for the Taylor coefficients of the function~$\xi(s)$. Izvestiya. Mathematics , Tome 65 (2001) no. 1, pp. 85-98. http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a5/

[1] Pustylnikov L. D., “Ob odnom svoistve klassicheskoi dzeta-funktsii, svyazannom s gipotezoi Rimana o nulyakh”, UMN, 54:1 (1999), 259–260 | MR

[2] Karatsuba A. A., Osnovy teorii chisel, Nauka, M., 1975 | MR | Zbl

[3] Voronin S. M., Karatsuba A. A., Dzeta-funktsiya Rimana, Fizmatlit, M., 1994 | MR