On the classification of Mori contractions: the case of an elliptic curve
Izvestiya. Mathematics , Tome 65 (2001) no. 1, pp. 75-84
Voir la notice de l'article provenant de la source Math-Net.Ru
We study three-dimensional Mori contractions $f\colon X\to Z$. It is proved that in a “good” model $(\overline{X},\overline{S})$ there are no elliptic components of $\operatorname{Diff}_{\overline{S}}$ with coefficients $\geqslant 6/7$.
@article{IM2_2001_65_1_a4,
author = {Yu. G. Prokhorov},
title = {On the classification of {Mori} contractions: the case of an elliptic curve},
journal = {Izvestiya. Mathematics },
pages = {75--84},
publisher = {mathdoc},
volume = {65},
number = {1},
year = {2001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a4/}
}
Yu. G. Prokhorov. On the classification of Mori contractions: the case of an elliptic curve. Izvestiya. Mathematics , Tome 65 (2001) no. 1, pp. 75-84. http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a4/