On the classification of Mori contractions: the case of an elliptic curve
Izvestiya. Mathematics , Tome 65 (2001) no. 1, pp. 75-84

Voir la notice de l'article provenant de la source Math-Net.Ru

We study three-dimensional Mori contractions $f\colon X\to Z$. It is proved that in a “good” model $(\overline{X},\overline{S})$ there are no elliptic components of $\operatorname{Diff}_{\overline{S}}$ with coefficients $\geqslant 6/7$.
@article{IM2_2001_65_1_a4,
     author = {Yu. G. Prokhorov},
     title = {On the classification of {Mori} contractions: the case of an elliptic curve},
     journal = {Izvestiya. Mathematics },
     pages = {75--84},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a4/}
}
TY  - JOUR
AU  - Yu. G. Prokhorov
TI  - On the classification of Mori contractions: the case of an elliptic curve
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 75
EP  - 84
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a4/
LA  - en
ID  - IM2_2001_65_1_a4
ER  - 
%0 Journal Article
%A Yu. G. Prokhorov
%T On the classification of Mori contractions: the case of an elliptic curve
%J Izvestiya. Mathematics 
%D 2001
%P 75-84
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a4/
%G en
%F IM2_2001_65_1_a4
Yu. G. Prokhorov. On the classification of Mori contractions: the case of an elliptic curve. Izvestiya. Mathematics , Tome 65 (2001) no. 1, pp. 75-84. http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a4/