A~Paley--Wiener type theorem for a~weighted space of infinitely differentiable functions
Izvestiya. Mathematics , Tome 64 (2000) no. 6, pp. 1271-1295.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Fourier–Laplace transform is used to describe the dual space of a weighted non-quasianalytic space of infinitely differentiable functions on the real line.
@article{IM2_2000_64_6_a5,
     author = {I. Kh. Musin},
     title = {A~Paley--Wiener type theorem for a~weighted space of infinitely differentiable functions},
     journal = {Izvestiya. Mathematics },
     pages = {1271--1295},
     publisher = {mathdoc},
     volume = {64},
     number = {6},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_6_a5/}
}
TY  - JOUR
AU  - I. Kh. Musin
TI  - A~Paley--Wiener type theorem for a~weighted space of infinitely differentiable functions
JO  - Izvestiya. Mathematics 
PY  - 2000
SP  - 1271
EP  - 1295
VL  - 64
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2000_64_6_a5/
LA  - en
ID  - IM2_2000_64_6_a5
ER  - 
%0 Journal Article
%A I. Kh. Musin
%T A~Paley--Wiener type theorem for a~weighted space of infinitely differentiable functions
%J Izvestiya. Mathematics 
%D 2000
%P 1271-1295
%V 64
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2000_64_6_a5/
%G en
%F IM2_2000_64_6_a5
I. Kh. Musin. A~Paley--Wiener type theorem for a~weighted space of infinitely differentiable functions. Izvestiya. Mathematics , Tome 64 (2000) no. 6, pp. 1271-1295. http://geodesic.mathdoc.fr/item/IM2_2000_64_6_a5/

[1] Yulmukhametov R. S., “Kvazianaliticheskie klassy funktsii v vypuklykh oblastyakh”, Matem. sb., 130(172):4(8) (1986), 500–519 | MR | Zbl

[2] Mandelbroit S., Primykayuschie ryady, regulyarizatsiya posledovatelnostei, primeneniya, IL, M., 1955

[3] Rokafellar R., Vypuklyi analiz, Mir, M., 1973

[4] Taylor B. A., “Analytically uniform spaces of infinitely differentiable functions”, Commun. on pure and appl. math., 24:1 (1971), 39–51 | DOI | MR | Zbl

[5] Napalkov V. V., Rudakov I. A., Opisanie yadra operatora svertki v prostranstvakh tipa Zhevreya, Preprint, In-t matematiki BNTs UrO AN SSSR, Ufa, 1988

[6] Solomesch M. I., Operatory tipa svertki v nekotorykh prostranstvakh analiticheskikh funktsii, Dis. $\dots$ kand. fiz.-mat. nauk, In-t matematiki s Vychislitelnym tsentrom Ufimskogo nauchnogo tsentra RAN, Ufa, 1995 | Zbl

[7] Solomesch M. I., K teoreme R. S. Yulmukhametova ob approksimatsii subgarmonicheskikh funktsii, Dep. v VINITI 24.07.92, No 2447 – B92, In-t matematiki UrO RAN, Ufa, 1992, 14 pp.

[8] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956

[9] Sebashtyan-i-Silva Zh., “O nekotorykh klassakh lokalno vypuklykh prostranstv, vazhnykh v prilozheniyakh”, Matematika, 1:1 (1957), 60–77 | MR

[10] Napalkov V. V., “Prostranstva analiticheskikh funktsii zadannogo rosta vblizi granitsy”, Izv. AN SSSR. Ser. matem., 51:2 (1987), 287–305 | MR | Zbl

[11] Popenov S. V., “O vesovom prostranstve funktsii, analiticheskikh v neogranichennoi vypukloi oblasti v ${\mathbb C}^m$”, Matem. zametki, 40:3 (1986), 374–384 | MR | Zbl

[12] Mannanov M. M., “Opisanie odnogo klassa analiticheskikh funktsionalov”, Sib. matem. zhurn., 31:3 (1990), 62–72 | MR | Zbl

[13] Yulmukhametov R. S., “Approksimatsiya subgarmonicheskikh funktsii”, Anal. Math., 11:3 (1985), 257–282 | DOI | MR | Zbl

[14] Yulmukhametov R. S., “Tselye funktsii mnogikh peremennykh s zadannym povedeniem v beskonechnosti”, Izv. AN SSSR. Ser. matem., 60:4 (1996), 205–224 | MR | Zbl

[15] Robertson A., Robertson V., Topologicheskie vektornye prostranstva, Mir, M., 1967 | MR | Zbl

[16] Napalkov V. V., Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982 | MR