The absence of global positive solutions of systems of semilinear elliptic inequalities in cones
Izvestiya. Mathematics , Tome 64 (2000) no. 6, pp. 1197-1215.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K$ be a cone in $\mathbb R^N$, $N\geqslant 2$. We establish conditions for the absence of global non-trivial non-negative solutions of semilinear elliptic inequalities and systems of inequalities of the form $$ -\operatorname{div}(|x|^\alpha Du)\geqslant |x|^\beta u^q, \qquad u\big|_{\partial K}=0. $$ We find the critical exponent $q^*$ that divides the domains of existence of these solutions from those of their absence. We prove that in the limiting case $q=q^*$ there are no solutions. The method is to multiply the system by a special factor and integrate the inequalities thus obtained.
@article{IM2_2000_64_6_a3,
     author = {G. G. Laptev},
     title = {The absence of global positive solutions of systems of semilinear elliptic inequalities in cones},
     journal = {Izvestiya. Mathematics },
     pages = {1197--1215},
     publisher = {mathdoc},
     volume = {64},
     number = {6},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_6_a3/}
}
TY  - JOUR
AU  - G. G. Laptev
TI  - The absence of global positive solutions of systems of semilinear elliptic inequalities in cones
JO  - Izvestiya. Mathematics 
PY  - 2000
SP  - 1197
EP  - 1215
VL  - 64
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2000_64_6_a3/
LA  - en
ID  - IM2_2000_64_6_a3
ER  - 
%0 Journal Article
%A G. G. Laptev
%T The absence of global positive solutions of systems of semilinear elliptic inequalities in cones
%J Izvestiya. Mathematics 
%D 2000
%P 1197-1215
%V 64
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2000_64_6_a3/
%G en
%F IM2_2000_64_6_a3
G. G. Laptev. The absence of global positive solutions of systems of semilinear elliptic inequalities in cones. Izvestiya. Mathematics , Tome 64 (2000) no. 6, pp. 1197-1215. http://geodesic.mathdoc.fr/item/IM2_2000_64_6_a3/

[1] Kuzin I., Pohozaev S., Entire solutions of semilinear elliptic equations, Birkhäuser, Basel, 1997, 250 pp. | MR | Zbl

[2] Mitidieri E., Pokhozhaev S. I., “Otsutstvie globalnykh polozhitelnykh reshenii kvazilineinykh ellipticheskikh neravenstv”, Dokl. RAN, 359:4 (1998), 456–460 | MR | Zbl

[3] Mitidieri E., Pokhozhaev S. I., “Otsutstvie polozhitelnykh reshenii dlya sistem kvazilineinykh ellipticheskikh uravnenii i neravenstv v $\mathbb R^N$”, Dokl. RAN, 366:1 (1999), 13–17 | MR | Zbl

[4] Mitidieri E., Pokhozhaev S. I., “Otsutstvie polozhitelnykh reshenii kvazilineinykh ellipticheskikh zadach v $\mathbb R^N$”, Tr. MIAN, 227, Nauka, M., 1999, 192–222 | MR | Zbl

[5] Kurta V. V., “K voprosu ob otsutstvii tselykh polozhitelnykh reshenii u polulineinykh ellipticheskikh uravnenii”, UMN, 50:4(304) (1995), 127

[6] Kurta V. V., Nekotorye voprosy kachestvennoi teorii nelineinykh differentsialnykh uravnenii vtorogo poryadka, Dis. $\dots$ doktora fiz.-mat. nauk, MIAN, M., 1994, 323 pp.

[7] Gidas B., Spruck J., “Global and local behaviour of positive solutions of nonlinear elliptic equations”, Comm. Pure Appl. Math., 34 (1981), 525–598 | DOI | MR | Zbl

[8] Berestycki H., Capuzzo Dolcetta J., Nirenberg L., “Superlinear indefinite elliptic problems and nonlinear Liouville theorems”, Topological Methods in Nonlinear Analysis, 4 (1995), 59–78 | MR

[9] Bandle C., Essen M., “On positive solutions of Emden equations in cone-like domains”, Arch. Rational Mech. Anal., 112:4 (1990), 319–338 | DOI | MR | Zbl

[10] Egnell H., “Positive solutions of semilinear equations in cones”, Trans. Amer. Math. Soc., 330:1 (1992), 191–201 | DOI | MR | Zbl

[11] Nguen Man Khung, “Ob otsutstvii polozhitelnykh reshenii nelineinykh ellipticheskikh uravnenii vtorogo poryadka v konicheskikh oblastyakh”, Differents. uravn., 34:4 (1998), 533–539 | MR

[12] Bandle C., “Positive solutions of Emden equations in a cone-like domains”, Progress in Nonlinear Differential Equations and their applications, 7 (1992), 71–75 | MR | Zbl

[13] Kondratev V. A., Eidelman S. D., “Polozhitelnye resheniya kvazilineinykh ellipticheskikh uravnenii vtorogo poryadka”, Dokl. RAN, 334:4 (1994), 427–428 | MR | Zbl

[14] Nguen Min Chi, “Polozhitelnye resheniya uravneniya Emdena–Foulera v konuse”, Differents. uravn., 30:4 (1994), 659–664 | MR | Zbl

[15] Goldshtein V. M., Reshetnyak Yu. G., Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983, 284 pp. | MR

[16] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985, 415 pp. | MR

[17] Miklyukov V. M., Emkostnye metody v zadachakh nelineinogo analiza, Dis. $\dots$ doktora fiz.-mat. nauk, Tyumensk. GU, Tyumen, 1980, 220 pp.

[18] Pokhozhaev S. I., “Suschestvenno nelineinye emkosti, indutsirovannye paroi differentsialnykh operatorov”, Dokl. RAN, 357:5 (1997), 592–594 | MR | Zbl