The absence of global positive solutions of systems of semilinear elliptic inequalities in cones
Izvestiya. Mathematics , Tome 64 (2000) no. 6, pp. 1197-1215
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $K$ be a cone in $\mathbb R^N$, $N\geqslant 2$. We establish conditions for the absence of global non-trivial non-negative solutions of semilinear elliptic inequalities and systems of inequalities of the form
$$
-\operatorname{div}(|x|^\alpha Du)\geqslant |x|^\beta u^q, \qquad u\big|_{\partial K}=0.
$$
We find the critical exponent $q^*$ that divides the domains of existence of these solutions from those of their absence. We prove that in the limiting case $q=q^*$ there are no solutions. The method is to multiply the system by a special factor and integrate the inequalities thus obtained.
@article{IM2_2000_64_6_a3,
author = {G. G. Laptev},
title = {The absence of global positive solutions of systems of semilinear elliptic inequalities in cones},
journal = {Izvestiya. Mathematics },
pages = {1197--1215},
publisher = {mathdoc},
volume = {64},
number = {6},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_6_a3/}
}
TY - JOUR AU - G. G. Laptev TI - The absence of global positive solutions of systems of semilinear elliptic inequalities in cones JO - Izvestiya. Mathematics PY - 2000 SP - 1197 EP - 1215 VL - 64 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2000_64_6_a3/ LA - en ID - IM2_2000_64_6_a3 ER -
G. G. Laptev. The absence of global positive solutions of systems of semilinear elliptic inequalities in cones. Izvestiya. Mathematics , Tome 64 (2000) no. 6, pp. 1197-1215. http://geodesic.mathdoc.fr/item/IM2_2000_64_6_a3/