Regular growth of systems of functions and systems of non-homogeneous convolution equations in convex domains of the complex plane
Izvestiya. Mathematics , Tome 64 (2000) no. 5, pp. 939-1001
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we introduce the notion of regular growth for a system of entire functions of finite order and type. This is a direct and natural generalization of the classical completely regular growth of an entire function. We obtain sufficient and necessary conditions for the solubility of a system of non-homogeneous convolution equations in convex domains of the complex plane. These conditions depend on whether the system of Laplace transforms of the analytic functionals that generate the convolution equations has regular growth. In the case of smooth convex domains, these solubility conditions form a criterion.
@article{IM2_2000_64_5_a3,
author = {A. S. Krivosheev},
title = {Regular growth of systems of functions and systems of non-homogeneous convolution equations in convex domains of the complex plane},
journal = {Izvestiya. Mathematics },
pages = {939--1001},
publisher = {mathdoc},
volume = {64},
number = {5},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a3/}
}
TY - JOUR AU - A. S. Krivosheev TI - Regular growth of systems of functions and systems of non-homogeneous convolution equations in convex domains of the complex plane JO - Izvestiya. Mathematics PY - 2000 SP - 939 EP - 1001 VL - 64 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a3/ LA - en ID - IM2_2000_64_5_a3 ER -
%0 Journal Article %A A. S. Krivosheev %T Regular growth of systems of functions and systems of non-homogeneous convolution equations in convex domains of the complex plane %J Izvestiya. Mathematics %D 2000 %P 939-1001 %V 64 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a3/ %G en %F IM2_2000_64_5_a3
A. S. Krivosheev. Regular growth of systems of functions and systems of non-homogeneous convolution equations in convex domains of the complex plane. Izvestiya. Mathematics , Tome 64 (2000) no. 5, pp. 939-1001. http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a3/