Regular growth of systems of functions and systems of non-homogeneous convolution equations in convex domains of the complex plane
Izvestiya. Mathematics , Tome 64 (2000) no. 5, pp. 939-1001.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we introduce the notion of regular growth for a system of entire functions of finite order and type. This is a direct and natural generalization of the classical completely regular growth of an entire function. We obtain sufficient and necessary conditions for the solubility of a system of non-homogeneous convolution equations in convex domains of the complex plane. These conditions depend on whether the system of Laplace transforms of the analytic functionals that generate the convolution equations has regular growth. In the case of smooth convex domains, these solubility conditions form a criterion.
@article{IM2_2000_64_5_a3,
     author = {A. S. Krivosheev},
     title = {Regular growth of systems of functions and systems of non-homogeneous convolution equations in convex domains of the complex plane},
     journal = {Izvestiya. Mathematics },
     pages = {939--1001},
     publisher = {mathdoc},
     volume = {64},
     number = {5},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a3/}
}
TY  - JOUR
AU  - A. S. Krivosheev
TI  - Regular growth of systems of functions and systems of non-homogeneous convolution equations in convex domains of the complex plane
JO  - Izvestiya. Mathematics 
PY  - 2000
SP  - 939
EP  - 1001
VL  - 64
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a3/
LA  - en
ID  - IM2_2000_64_5_a3
ER  - 
%0 Journal Article
%A A. S. Krivosheev
%T Regular growth of systems of functions and systems of non-homogeneous convolution equations in convex domains of the complex plane
%J Izvestiya. Mathematics 
%D 2000
%P 939-1001
%V 64
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a3/
%G en
%F IM2_2000_64_5_a3
A. S. Krivosheev. Regular growth of systems of functions and systems of non-homogeneous convolution equations in convex domains of the complex plane. Izvestiya. Mathematics , Tome 64 (2000) no. 5, pp. 939-1001. http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a3/

[1] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[2] Napalkov V. V., Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982 | MR

[3] Krivosheev A. S., “Kriterii razreshimosti neodnorodnykh uravnenii svertki v vypuklykh oblastyakh prostranstva $\mathbb C^n$”, Izv. AN SSSR. Ser. matem., 54:3 (1990), 480–500 | MR | Zbl

[4] Krivosheev A. S., Napalkov V. V., “Kompleksnyi analiz i operatory svertki”, UMN, 47:6(288) (1992), 3–58 | MR | Zbl

[5] Ehrenpreis L., Fourier analysis in several complex variables, Wiley-Interscience publishers, N.Y., 1970 | MR | Zbl

[6] Malgrange B., Systemes differentiells a coefficients constants, Seminaire Bourbaki, no. 246, Paris, 1962/63

[7] Napalkov V. V., “O sistemakh neodnorodnykh differentsialnykh uravnenii v chastnykh proizvodnykh beskonechnogo poryadka”, Matem. zametki, 26:2 (1979), 217–226 | MR | Zbl

[8] Dedonne Zh., Shvarts L., “Dvoistvennost v prostranstvakh $(F)$ i $(LF)$”, Matematika, 2:2 (1958), 77–107

[9] Krasichkov-Ternovskii I. F., “Invariantnye podprostranstva analiticheskikh funktsii. I: Spektralnyi sintez na vypuklykh oblastyakh”, Matem. sb., 87(129):4 (1972), 459–489 | MR

[10] Krasichkov-Ternovskii I. F., “Invariantnye podprostranstva analiticheskikh funktsii. II: Spektralnyi sintez na vypuklykh oblastyakh”, Matem. sb., 88(130):1 (1972), 3–30

[11] Wiegerink J. J., “Growth properties of Paley–Wiener functions on $\mathbb C^n$”, Nederl. Akad. Wetensch. Proc., 87 (1984), 95–112 | MR

[12] Sigurdsson R., “Convolution equations in domains of $\mathbb C^n$”, Arkiv For Mat., 29 (1991), 285–305 | DOI | MR | Zbl

[13] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi. I: Teoriya raspredelenii i analiz Fure, Mir, M., 1986

[14] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985 | MR

[15] Leontev A. F., Tselye funktsii. Ryady eksponent, Nauka, M., 1983 | MR

[16] Shabat B. V., Vvedenie v kompleksnyi analiz, Ch. II, Nauka, M., 1985 | MR

[17] Khermander L., Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968 | MR

[18] Lelon P., Gruman L., Tselye funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1989 | MR | Zbl