Analogues of the Harnack--Thom inequality for a~real algebraic surface
Izvestiya. Mathematics , Tome 64 (2000) no. 5, pp. 915-937.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove two analogues of the Harnack–Thom inequality for a real algebraic surface. These inequalities involve the Picard group and the Brauer group of the complexification of the surface. We present necessary and sufficient conditions for these inequalities to be equations. These conditions are stated with the help of real cycle maps.
@article{IM2_2000_64_5_a2,
     author = {V. A. Krasnov},
     title = {Analogues of the {Harnack--Thom} inequality for a~real algebraic surface},
     journal = {Izvestiya. Mathematics },
     pages = {915--937},
     publisher = {mathdoc},
     volume = {64},
     number = {5},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a2/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - Analogues of the Harnack--Thom inequality for a~real algebraic surface
JO  - Izvestiya. Mathematics 
PY  - 2000
SP  - 915
EP  - 937
VL  - 64
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a2/
LA  - en
ID  - IM2_2000_64_5_a2
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T Analogues of the Harnack--Thom inequality for a~real algebraic surface
%J Izvestiya. Mathematics 
%D 2000
%P 915-937
%V 64
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a2/
%G en
%F IM2_2000_64_5_a2
V. A. Krasnov. Analogues of the Harnack--Thom inequality for a~real algebraic surface. Izvestiya. Mathematics , Tome 64 (2000) no. 5, pp. 915-937. http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a2/

[1] Grotendik A., O nekotorykh voprosakh gomologicheskoi algebry, IL, M., 1961

[2] Grothendick A., “Le groupe de Brauer”, Dix Exposes sur la Cohomologie des Schemas, North-Holland, Amsterdam, 1968, 46–188

[3] Kartan A., Eilenberg S., Gomologicheskaya algebra, IL, M., 1960

[4] Krasnov V. A., “Otobrazhenie Albaneze dlya veschestvennykh algebraicheskikh mnogoobrazii”, Matem. zametki, 32:3 (1982), 365–374 | MR | Zbl

[5] Krasnov V. A., “Neravenstva Garnaka–Toma dlya otobrazhenii veschestvennykh algebraicheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 47:2 (1983), 268–297 | MR

[6] Krasnov V. A., “Kharakteristicheskie klassy vektornykh rassloenii na veschestvennom algebraicheskom mnogoobrazii”, Izv. AN SSSR. Ser. matem., 55:4 (1991), 716–746 | MR

[7] Krasnov V. A., “Ob ekvivariantnykh kogomologiyakh Grotendika veschestvennogo algebraicheskogo mnogoobraziya i ikh prilozheniyakh”, Izv. RAN. Ser. matem., 58:3 (1994), 36–52 | MR | Zbl

[8] Krasnov V. A., “Kogomologicheskaya gruppa Brauera veschestvennogo algebraicheskogo mnogoobraziya”, Izv. RAN. Ser. matem., 60:5 (1996), 57–88 | MR | Zbl

[9] Krasnov V. A., “Ekvivariantnye kogomologii veschestvennoi algebraicheskoi poverkhnosti i ikh prilozheniya”, Izv. RAN. Ser. matem., 60:6 (1996), 101–126 | MR | Zbl

[10] Krasnov V. A., “Veschestvennye algebraicheskie GM-mnogoobraziya”, Izv. RAN. Ser. matem., 62:3 (1998), 39–66 | MR | Zbl

[11] Krasnov V. A., “Veschestvennye algebraicheskie GM$\mathbb Z$-poverkhnosti”, Izv. RAN. Ser. matem., 62:4 (1998), 51–80 | MR | Zbl

[12] Krasnov V. A., “O gruppe Pikara i gruppe Brauera veschestvennoi algebraicheskoi poverkhnosti”, Matem. zametki, 67:2 (2000), 211–230 | MR

[13] Manin Y. I., “Le groupe de Brauer–Grothendick en géometrie diophantienne”, Actes du Congrès Intern. Math., V. 1 (Nice, 1970), Gauthier-Villars, Paris, 1971, 401–411 | MR

[14] Nikulin V. V., “On the Brauer group of real algebraic surfaces”, Algebraic Geometry and its Applications, Yaroslavl', 1992, 113–136 | MR

[15] Silhol R., “Cohomologie de Galois et cohomologie des varietés algébriques réelles; applications aux surfaces rationnelles”, Bul. Soc. Math. France, 115 (1987), 107–125 | MR | Zbl

[16] Thom R., “Sur l'homologie des varietés algébriques reelles”, Different. and combinator. top., Univ. Press, Princeton–N. Y., 1965, 255–265 | MR

[17] Rokhlin V. A., “Sravneniya po $\mod 16$ v shestnadtsatoi probleme Gilberta”, Funkts. analiz i ego prilozh., 6:4 (1972), 71–75 | MR