Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2000_64_5_a2, author = {V. A. Krasnov}, title = {Analogues of the {Harnack--Thom} inequality for a~real algebraic surface}, journal = {Izvestiya. Mathematics }, pages = {915--937}, publisher = {mathdoc}, volume = {64}, number = {5}, year = {2000}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a2/} }
V. A. Krasnov. Analogues of the Harnack--Thom inequality for a~real algebraic surface. Izvestiya. Mathematics , Tome 64 (2000) no. 5, pp. 915-937. http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a2/
[1] Grotendik A., O nekotorykh voprosakh gomologicheskoi algebry, IL, M., 1961
[2] Grothendick A., “Le groupe de Brauer”, Dix Exposes sur la Cohomologie des Schemas, North-Holland, Amsterdam, 1968, 46–188
[3] Kartan A., Eilenberg S., Gomologicheskaya algebra, IL, M., 1960
[4] Krasnov V. A., “Otobrazhenie Albaneze dlya veschestvennykh algebraicheskikh mnogoobrazii”, Matem. zametki, 32:3 (1982), 365–374 | MR | Zbl
[5] Krasnov V. A., “Neravenstva Garnaka–Toma dlya otobrazhenii veschestvennykh algebraicheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 47:2 (1983), 268–297 | MR
[6] Krasnov V. A., “Kharakteristicheskie klassy vektornykh rassloenii na veschestvennom algebraicheskom mnogoobrazii”, Izv. AN SSSR. Ser. matem., 55:4 (1991), 716–746 | MR
[7] Krasnov V. A., “Ob ekvivariantnykh kogomologiyakh Grotendika veschestvennogo algebraicheskogo mnogoobraziya i ikh prilozheniyakh”, Izv. RAN. Ser. matem., 58:3 (1994), 36–52 | MR | Zbl
[8] Krasnov V. A., “Kogomologicheskaya gruppa Brauera veschestvennogo algebraicheskogo mnogoobraziya”, Izv. RAN. Ser. matem., 60:5 (1996), 57–88 | MR | Zbl
[9] Krasnov V. A., “Ekvivariantnye kogomologii veschestvennoi algebraicheskoi poverkhnosti i ikh prilozheniya”, Izv. RAN. Ser. matem., 60:6 (1996), 101–126 | MR | Zbl
[10] Krasnov V. A., “Veschestvennye algebraicheskie GM-mnogoobraziya”, Izv. RAN. Ser. matem., 62:3 (1998), 39–66 | MR | Zbl
[11] Krasnov V. A., “Veschestvennye algebraicheskie GM$\mathbb Z$-poverkhnosti”, Izv. RAN. Ser. matem., 62:4 (1998), 51–80 | MR | Zbl
[12] Krasnov V. A., “O gruppe Pikara i gruppe Brauera veschestvennoi algebraicheskoi poverkhnosti”, Matem. zametki, 67:2 (2000), 211–230 | MR
[13] Manin Y. I., “Le groupe de Brauer–Grothendick en géometrie diophantienne”, Actes du Congrès Intern. Math., V. 1 (Nice, 1970), Gauthier-Villars, Paris, 1971, 401–411 | MR
[14] Nikulin V. V., “On the Brauer group of real algebraic surfaces”, Algebraic Geometry and its Applications, Yaroslavl', 1992, 113–136 | MR
[15] Silhol R., “Cohomologie de Galois et cohomologie des varietés algébriques réelles; applications aux surfaces rationnelles”, Bul. Soc. Math. France, 115 (1987), 107–125 | MR | Zbl
[16] Thom R., “Sur l'homologie des varietés algébriques reelles”, Different. and combinator. top., Univ. Press, Princeton–N. Y., 1965, 255–265 | MR
[17] Rokhlin V. A., “Sravneniya po $\mod 16$ v shestnadtsatoi probleme Gilberta”, Funkts. analiz i ego prilozh., 6:4 (1972), 71–75 | MR