Ergodic properties of discrete quadratic stochastic processes defined on von Neumann algebras
Izvestiya. Mathematics , Tome 64 (2000) no. 5, pp. 873-890.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper contains necessary and sufficient conditions under which the ergodic principle and the regularity condition hold for discrete quantum quadratic stochastic processes defined on von Neumann algebras. A connection between these processes and Markov processes is established.
@article{IM2_2000_64_5_a0,
     author = {N. N. Ganikhodzhaev and F. M. Mukhamedov},
     title = {Ergodic properties of discrete quadratic stochastic processes defined on von {Neumann} algebras},
     journal = {Izvestiya. Mathematics },
     pages = {873--890},
     publisher = {mathdoc},
     volume = {64},
     number = {5},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a0/}
}
TY  - JOUR
AU  - N. N. Ganikhodzhaev
AU  - F. M. Mukhamedov
TI  - Ergodic properties of discrete quadratic stochastic processes defined on von Neumann algebras
JO  - Izvestiya. Mathematics 
PY  - 2000
SP  - 873
EP  - 890
VL  - 64
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a0/
LA  - en
ID  - IM2_2000_64_5_a0
ER  - 
%0 Journal Article
%A N. N. Ganikhodzhaev
%A F. M. Mukhamedov
%T Ergodic properties of discrete quadratic stochastic processes defined on von Neumann algebras
%J Izvestiya. Mathematics 
%D 2000
%P 873-890
%V 64
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a0/
%G en
%F IM2_2000_64_5_a0
N. N. Ganikhodzhaev; F. M. Mukhamedov. Ergodic properties of discrete quadratic stochastic processes defined on von Neumann algebras. Izvestiya. Mathematics , Tome 64 (2000) no. 5, pp. 873-890. http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a0/

[1] Boltsman L., Izbrannye trudy, Nauka, M., 1984 | MR

[2] Janks R. D., “Quadratic differential systems for interactive population models”, J. Diff. Equation, 5:3 (1985), 497–514 | DOI | MR

[3] Bernshtein S. N., “Reshenie odnoi matematicheskoi problemy, svyazannoi s teoriei nasledstvennosti”, Uch. zap. N.-I. kaf. Ukr. otd. mat., 1924, no. 1, 83–115

[4] Ulam S. M., Nereshennye matematicheskie problemy, Nauka, M., 1964 | Zbl

[5] Genetika i nasledstvennost, Sb. statei, Mir, M., 1987

[6] Kesten H., “Quadratic transformations: a model for population growth. I; II”, Adv. Appl. Prob., 1970, no. 2, 1–82 | DOI | MR | Zbl

[7] Lyubich Yu. I., “Osnovnye ponyatiya i teoremy evolyutsionnoi genetiki svobodnykh populyatsii”, UMN, 26:5 (1971), 51–116 | MR | Zbl

[8] Sarymsakov T. A., Ganikhodzhaev R. N., “Ergodicheskii printsip dlya kvadratichnykh stokhasticheskikh operatorov”, Izv. AN UzSSR. Ser. fiz.-mat., 1979, no. 6, 34–39 | MR

[9] Vallander S. S., “O predelnom povedenii posledovatelnosti iteratsii nekotorykh kvadratichnykh preobrazovanii”, DAN SSSR, 202:3 (1972), 515–517 | MR | Zbl

[10] Maksimov V. M., “Kubicheskie stokhasticheskie matritsy i ikh veroyatnostnye interpretatsii”, Teor. veroyatn. i ee primen., 41:1 (1996), 89–106 | MR | Zbl

[11] Sarymsakov T. A., Ganikhodzhaev N. N., “Analiticheskie metody v teorii kvadratichnykh stokhasticheskikh operatorov”, DAN SSSR, 305:5 (1989), 1052–1056 | MR | Zbl

[12] Sarymsakov T. A., Ganikhodzhaev N. N., “Ob ergodicheskom printsipe dlya kvadratichnykh protsessov”, DAN SSSR, 316:6 (1991) | Zbl

[13] Sarymsakov T. A., Ganikhodzhaev N. N., “Analytic methods in the theory of quadratic stochastic processes”, J. Ther. Prob., 3:1 (1990), 51–70 | DOI | MR | Zbl

[14] Ganikhodzhaev N. N., “On stochastic processes generated by quadratic operators”, J. Ther. Prob., 4:4 (1991), 639–653 | DOI | MR | Zbl

[15] Lyubich Yu. I., Matematicheskie struktury v populyatsionnoi genetike, Nauk. dumka, Kiev, 1983 | MR

[16] Ganikhodzhaev N. N., Mukhamedov F. M., “O kvantovykh kvadratichnykh stokhasticheskikh protsessakh”, DAN Resp. Uzb., 1997, no. 3, 13–16 | MR | Zbl

[17] Ganikhodzhaev N. N., Mukhamedov F. M., “O kvantovykh kvadratichnykh stokhasticheskikh protsessakh i nekotorye ergodicheskie teoremy dlya takikh protsessov”, Uzb. matem. zhurn., 1997, no. 3, 8–20 | MR | Zbl

[18] Ganikhodzhaev N. N., Mukhamedov F. M., “Ergodicheskie svoistva kvantovykh kvadratichnykh stokhasticheskikh protsessov”, UMN, 53:6 (1998), 243–244 | MR | Zbl

[19] Ganikhodzhaev N. N., Mukhamedov F. M., “Usloviya regulyarnosti kvantovykh kvadratichnykh stokhasticheskikh protsessov”, Dokl. RAN, 365:3 (1999), 301–303 | MR | Zbl

[20] Bratteli U., Robinson D., Operatornye algebry i kvantovaya statisticheskaya mekhanika, Mir, M., 1982 | MR | Zbl

[21] Kolmogorov A. N., “Ob analiticheskikh metodakh v teorii veroyatnostei”, UMN, 1938, no. 5, 5–51

[22] Ganikhodzhaev N. N., “Ob usredneniyakh kvadratichnykh stokhasticheskikh protsessov”, DAN UzSSR, 1989, no. 10, 7–9 | MR | Zbl

[23] Sarymsakov T. A., Zimakov N. P., “Ergodicheskie svoistva markovskikh operatorov na uporyadochennykh normirovannykh prostranstvakh s bazoi”, Operatornye algebry i funktsionalnye prostranstva, Fan, Tashkent, 1988, 45–53 | MR | Zbl

[24] Kartashev N. V., “O neravenstvakh i teoremakh ergodichnosti i ustoichivosti tsepei Markova s obschim fazovym prostranstvom, I”, Teor. veroyatn. i ee primen., 30:2 (1985), 260–270

[25] Ayupov Sh. A., Sarymsakov T. A., “Ob odnorodnykh tsepyakh Markova na polupolyakh”, Teor. veroyatn. i ee primen., 26:3 (1981), 521–531 | MR | Zbl