Ergodic properties of discrete quadratic stochastic processes defined on von Neumann algebras
Izvestiya. Mathematics, Tome 64 (2000) no. 5, pp. 873-890 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper contains necessary and sufficient conditions under which the ergodic principle and the regularity condition hold for discrete quantum quadratic stochastic processes defined on von Neumann algebras. A connection between these processes and Markov processes is established.
@article{IM2_2000_64_5_a0,
     author = {N. N. Ganikhodzhaev and F. M. Mukhamedov},
     title = {Ergodic properties of discrete quadratic stochastic processes defined on von {Neumann} algebras},
     journal = {Izvestiya. Mathematics},
     pages = {873--890},
     year = {2000},
     volume = {64},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a0/}
}
TY  - JOUR
AU  - N. N. Ganikhodzhaev
AU  - F. M. Mukhamedov
TI  - Ergodic properties of discrete quadratic stochastic processes defined on von Neumann algebras
JO  - Izvestiya. Mathematics
PY  - 2000
SP  - 873
EP  - 890
VL  - 64
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a0/
LA  - en
ID  - IM2_2000_64_5_a0
ER  - 
%0 Journal Article
%A N. N. Ganikhodzhaev
%A F. M. Mukhamedov
%T Ergodic properties of discrete quadratic stochastic processes defined on von Neumann algebras
%J Izvestiya. Mathematics
%D 2000
%P 873-890
%V 64
%N 5
%U http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a0/
%G en
%F IM2_2000_64_5_a0
N. N. Ganikhodzhaev; F. M. Mukhamedov. Ergodic properties of discrete quadratic stochastic processes defined on von Neumann algebras. Izvestiya. Mathematics, Tome 64 (2000) no. 5, pp. 873-890. http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a0/

[1] Boltsman L., Izbrannye trudy, Nauka, M., 1984 | MR

[2] Janks R. D., “Quadratic differential systems for interactive population models”, J. Diff. Equation, 5:3 (1985), 497–514 | DOI | MR

[3] Bernshtein S. N., “Reshenie odnoi matematicheskoi problemy, svyazannoi s teoriei nasledstvennosti”, Uch. zap. N.-I. kaf. Ukr. otd. mat., 1924, no. 1, 83–115

[4] Ulam S. M., Nereshennye matematicheskie problemy, Nauka, M., 1964 | Zbl

[5] Genetika i nasledstvennost, Sb. statei, Mir, M., 1987

[6] Kesten H., “Quadratic transformations: a model for population growth. I; II”, Adv. Appl. Prob., 1970, no. 2, 1–82 | DOI | MR | Zbl

[7] Lyubich Yu. I., “Osnovnye ponyatiya i teoremy evolyutsionnoi genetiki svobodnykh populyatsii”, UMN, 26:5 (1971), 51–116 | MR | Zbl

[8] Sarymsakov T. A., Ganikhodzhaev R. N., “Ergodicheskii printsip dlya kvadratichnykh stokhasticheskikh operatorov”, Izv. AN UzSSR. Ser. fiz.-mat., 1979, no. 6, 34–39 | MR

[9] Vallander S. S., “O predelnom povedenii posledovatelnosti iteratsii nekotorykh kvadratichnykh preobrazovanii”, DAN SSSR, 202:3 (1972), 515–517 | MR | Zbl

[10] Maksimov V. M., “Kubicheskie stokhasticheskie matritsy i ikh veroyatnostnye interpretatsii”, Teor. veroyatn. i ee primen., 41:1 (1996), 89–106 | MR | Zbl

[11] Sarymsakov T. A., Ganikhodzhaev N. N., “Analiticheskie metody v teorii kvadratichnykh stokhasticheskikh operatorov”, DAN SSSR, 305:5 (1989), 1052–1056 | MR | Zbl

[12] Sarymsakov T. A., Ganikhodzhaev N. N., “Ob ergodicheskom printsipe dlya kvadratichnykh protsessov”, DAN SSSR, 316:6 (1991) | Zbl

[13] Sarymsakov T. A., Ganikhodzhaev N. N., “Analytic methods in the theory of quadratic stochastic processes”, J. Ther. Prob., 3:1 (1990), 51–70 | DOI | MR | Zbl

[14] Ganikhodzhaev N. N., “On stochastic processes generated by quadratic operators”, J. Ther. Prob., 4:4 (1991), 639–653 | DOI | MR | Zbl

[15] Lyubich Yu. I., Matematicheskie struktury v populyatsionnoi genetike, Nauk. dumka, Kiev, 1983 | MR

[16] Ganikhodzhaev N. N., Mukhamedov F. M., “O kvantovykh kvadratichnykh stokhasticheskikh protsessakh”, DAN Resp. Uzb., 1997, no. 3, 13–16 | MR | Zbl

[17] Ganikhodzhaev N. N., Mukhamedov F. M., “O kvantovykh kvadratichnykh stokhasticheskikh protsessakh i nekotorye ergodicheskie teoremy dlya takikh protsessov”, Uzb. matem. zhurn., 1997, no. 3, 8–20 | MR | Zbl

[18] Ganikhodzhaev N. N., Mukhamedov F. M., “Ergodicheskie svoistva kvantovykh kvadratichnykh stokhasticheskikh protsessov”, UMN, 53:6 (1998), 243–244 | MR | Zbl

[19] Ganikhodzhaev N. N., Mukhamedov F. M., “Usloviya regulyarnosti kvantovykh kvadratichnykh stokhasticheskikh protsessov”, Dokl. RAN, 365:3 (1999), 301–303 | MR | Zbl

[20] Bratteli U., Robinson D., Operatornye algebry i kvantovaya statisticheskaya mekhanika, Mir, M., 1982 | MR | Zbl

[21] Kolmogorov A. N., “Ob analiticheskikh metodakh v teorii veroyatnostei”, UMN, 1938, no. 5, 5–51

[22] Ganikhodzhaev N. N., “Ob usredneniyakh kvadratichnykh stokhasticheskikh protsessov”, DAN UzSSR, 1989, no. 10, 7–9 | MR | Zbl

[23] Sarymsakov T. A., Zimakov N. P., “Ergodicheskie svoistva markovskikh operatorov na uporyadochennykh normirovannykh prostranstvakh s bazoi”, Operatornye algebry i funktsionalnye prostranstva, Fan, Tashkent, 1988, 45–53 | MR | Zbl

[24] Kartashev N. V., “O neravenstvakh i teoremakh ergodichnosti i ustoichivosti tsepei Markova s obschim fazovym prostranstvom, I”, Teor. veroyatn. i ee primen., 30:2 (1985), 260–270

[25] Ayupov Sh. A., Sarymsakov T. A., “Ob odnorodnykh tsepyakh Markova na polupolyakh”, Teor. veroyatn. i ee primen., 26:3 (1981), 521–531 | MR | Zbl