One-dimensional equations of deformation of thin slightly curved rods. Asymptotical analysis and justification
Izvestiya. Mathematics , Tome 64 (2000) no. 3, pp. 531-562

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain asymptotics for the solution of the spatial problem of elasticity theory in a thin body (a rod) with a smoothly varying cross-section. Any anisotropy and any non-homogeneity of material is admitted. The ends of the a rod, which is under the action of volume forces, are rigidly fixed (clamped), and the lateral surface is under the action of forces. The small parameter $h$ is the ratio of the maximal diameter of the rod to its length. We suggest conditions on the differential properties and the structure of external load under which the solution of the one-dimensional equations yielded by asymptotical analysis provides an acceptable approximation to the three-dimensional displacement and stress fields. The error estimate is based on a special version of Korn's inequality, which is asymptotically sharp if suitable weight factors and powers of $h$ are introduced into the $L_2$-norms of displacements and their derivatives.
@article{IM2_2000_64_3_a2,
     author = {S. A. Nazarov and A. S. Slutskij},
     title = {One-dimensional equations of deformation of thin slightly curved rods. {Asymptotical} analysis and justification},
     journal = {Izvestiya. Mathematics },
     pages = {531--562},
     publisher = {mathdoc},
     volume = {64},
     number = {3},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_3_a2/}
}
TY  - JOUR
AU  - S. A. Nazarov
AU  - A. S. Slutskij
TI  - One-dimensional equations of deformation of thin slightly curved rods. Asymptotical analysis and justification
JO  - Izvestiya. Mathematics 
PY  - 2000
SP  - 531
EP  - 562
VL  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2000_64_3_a2/
LA  - en
ID  - IM2_2000_64_3_a2
ER  - 
%0 Journal Article
%A S. A. Nazarov
%A A. S. Slutskij
%T One-dimensional equations of deformation of thin slightly curved rods. Asymptotical analysis and justification
%J Izvestiya. Mathematics 
%D 2000
%P 531-562
%V 64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2000_64_3_a2/
%G en
%F IM2_2000_64_3_a2
S. A. Nazarov; A. S. Slutskij. One-dimensional equations of deformation of thin slightly curved rods. Asymptotical analysis and justification. Izvestiya. Mathematics , Tome 64 (2000) no. 3, pp. 531-562. http://geodesic.mathdoc.fr/item/IM2_2000_64_3_a2/