One-dimensional equations of deformation of thin slightly curved rods. Asymptotical analysis and justification
Izvestiya. Mathematics , Tome 64 (2000) no. 3, pp. 531-562.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain asymptotics for the solution of the spatial problem of elasticity theory in a thin body (a rod) with a smoothly varying cross-section. Any anisotropy and any non-homogeneity of material is admitted. The ends of the a rod, which is under the action of volume forces, are rigidly fixed (clamped), and the lateral surface is under the action of forces. The small parameter $h$ is the ratio of the maximal diameter of the rod to its length. We suggest conditions on the differential properties and the structure of external load under which the solution of the one-dimensional equations yielded by asymptotical analysis provides an acceptable approximation to the three-dimensional displacement and stress fields. The error estimate is based on a special version of Korn's inequality, which is asymptotically sharp if suitable weight factors and powers of $h$ are introduced into the $L_2$-norms of displacements and their derivatives.
@article{IM2_2000_64_3_a2,
     author = {S. A. Nazarov and A. S. Slutskij},
     title = {One-dimensional equations of deformation of thin slightly curved rods. {Asymptotical} analysis and justification},
     journal = {Izvestiya. Mathematics },
     pages = {531--562},
     publisher = {mathdoc},
     volume = {64},
     number = {3},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_3_a2/}
}
TY  - JOUR
AU  - S. A. Nazarov
AU  - A. S. Slutskij
TI  - One-dimensional equations of deformation of thin slightly curved rods. Asymptotical analysis and justification
JO  - Izvestiya. Mathematics 
PY  - 2000
SP  - 531
EP  - 562
VL  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2000_64_3_a2/
LA  - en
ID  - IM2_2000_64_3_a2
ER  - 
%0 Journal Article
%A S. A. Nazarov
%A A. S. Slutskij
%T One-dimensional equations of deformation of thin slightly curved rods. Asymptotical analysis and justification
%J Izvestiya. Mathematics 
%D 2000
%P 531-562
%V 64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2000_64_3_a2/
%G en
%F IM2_2000_64_3_a2
S. A. Nazarov; A. S. Slutskij. One-dimensional equations of deformation of thin slightly curved rods. Asymptotical analysis and justification. Izvestiya. Mathematics , Tome 64 (2000) no. 3, pp. 531-562. http://geodesic.mathdoc.fr/item/IM2_2000_64_3_a2/

[1] Clebsch A., Theorie der Elastizität der festen Körper, Leipzig, 1862

[2] Timoshenko S. P., Kolebaniya v inzhenernom dele, Nauka, M., 1967 | Zbl

[3] Lure Yu. N., Dzhanelidze G. Yu., “Zadacha San-Venana dlya estestvenno skruchennykh sterzhnei”, DAN SSSR, 24:1 (1939), 23–26; 3, 225–229; 4, 325–326

[4] Lekhnitskii S. G., Kruchenie anizotropnykh i neodnorodnykh sterzhnei, Nauka, M., 1971

[5] Rabotnov Yu. N., Mekhanika deformiruemogo tverdogo tela, Nauka, M., 1978

[6] Ilyukhin A. A., Prostranstvennye zadachi nelineinoi teorii uprugikh sterzhnei, Naukova dumka, Kiev, 1979 | MR

[7] Rzhanitsyn A. R., Stroitelnaya mekhanika, Vysshaya shkola, M., 1982

[8] Svetlitskii V. A., Mekhanika sterzhnei, T. 1, 2, Vysshaya shkola, M., 1987

[9] Berdichevskii V. L., “Ob energii uprugogo sterzhnya”, Prikladnaya matematika i mekhanika, 40:4 (1981), 704–718

[10] Eliseev V. V., “K nelineinoi dinamike uprugogo sterzhnya”, Prikladnaya matematika i mekhanika, 52:4 (1988), 635–642 | MR

[11] Galaktionov E. V., Tropp E. A., “Asimptoticheskii metod rascheta termouprugikh napryazhenii v tonkom sterzhne”, Izv. AN SSSR. Ser. fiz., 40:7 (1976), 1399–1406

[12] Sanchez-Hubert J., Sanchez-Palencia E., “Couplage flexion-torsion-traction dans les poutres anisotropes a section heterogene”, C. R. Acad. Sci. Paris. Ser. 2, 312 (1991), 337–344 | MR | Zbl

[13] Sanchez-Hubert J., Sanchez-Palencia E., Coques elastiques mines. Proprietes asymptotiques, Masson, Paris, 1997 | Zbl

[14] Eliseev V. V., Orlov S. G., “Asimptoticheskoe rasscheplenie v prostranstvennoi zadache lineinoi uprugosti dlya udlinennykh tel so strukturoi”, Prikladnaya matematika i mekhanika, 63:1 (1999), 93–101 | MR | Zbl

[15] Shoikhet B. A., “Ob asimptoticheski tochnykh uravneniyakh tonkikh plit slozhnoi struktury”, Prikladnaya matematika i mekhanika, 37:5 (1973), 914–924 | MR

[16] Ciarlet P. C., Destuynder P. A., “Justification of the two-dimensional linear plate model”, J. Mecanique, 18 (1979), 315–344 | MR | Zbl

[17] Bermúdez A., Viaño J. M., “Une justification des équations de la thermoélasticité des poutres à section variable par des méthodes asymptotiques”, RAIRO Analyce Numérique, 18 (1984), 347–376 | MR | Zbl

[18] Tutek Z., Aganovich I., “A justification of the one-dimensional model of an elastic beam”, Math. Methods in Appl. Sci., 8 (1986), 1–14 | DOI | MR

[19] Trabucho de Campos L., Viaño J. M., “Existence and characterization of higher order terms in an asymptotic expansion method for linearized elastic beams”, Asymptotic Analysis, 2 (1989), 223–255 | MR | Zbl

[20] Le Dret H., “Modeling of the junction between two rods”, J. Math. Pures Appl., 68 (1989), 365–397 | MR | Zbl

[21] Le Dret H., Problemes variationnels dans les multi-domains modélisation des jonctions et applications, Masson, Paris, 1991 | MR | Zbl

[22] Veiga M. F., “Asymptotic method applied to a beam with a variable cross section”, Asymptotic methods for elastic Structures, Walter de Gruyter, Berlin–N.Y., 1995, 237–254 | MR | Zbl

[23] Nazarov S. A., “Struktura resheniya ellipticheskikh kraevykh zadach i tonkikh oblastyakh”, Vestn. LGU, 1982, no. 7, 65–68 | Zbl

[24] Kozlova M. V., “Osrednenie trekhmernoi zadachi teorii uprugosti dlya tonkogo neodnorodnogo brusa”, Vestn. MGU. Ser. matem., mekh., 1989, no. 5, 6–10 | MR

[25] Kozlova M. V., Panasenko G. P., “Osrednenie trekhmernoi zadachi teorii uprugosti v neodnorodnom sterzhne”, ZhVMiMF, 31:10 (1991), 1592–1596 | MR

[26] Panasenko G. P., “Asymptotic analysis of bar systems, I”, Russian J. of Math. Physics, 2:3 (1994), 325–352 ; “II”, ibid., 4:1 (1996), 87–116 | MR | Zbl | MR | Zbl

[27] Mazja W. G., Nasarow S. A., Plamenewskij B. A., Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, Bd. 2, Academie-Verlag, Berlin, 1991

[28] Leora S. N., Nazarov S. A., Proskura A. V., “Vyvod predelnykh uravnenii dlya ellipticheskikh zadach v tonkikh oblastyakh pri pomoschi EVM”, ZhVMiMF, 26:7 (1986), 1032–1048 | MR | Zbl

[29] Nazarov S. A., “Obschaya skhema osredneniya samosopryazhennykh ellipticheskikh sistem v mnogomernykh oblastyakh, v tom chisle tonkikh”, Algebra i analiz, 7:5 (1995), 1–92 | Zbl

[30] Nazarov S. A., Piletskas K. I., “Reinoldsovo techenie zhidkosti v tonkom trekhmernom kanale”, Litovskii matem. sb., 30:4 (1990), 772–783 | MR | Zbl

[31] Kondratiev V. A., Oleinik O. A., “Hardy's and Korn's type inequalities and their applications”, Rendiconti di Matematica. Ser. VII, 10 (1990), 641–666 | MR | Zbl

[32] Nazarov S. A., “Neravenstva Korna, asimptoticheski tochnye dlya tonkikh oblastei”, Vestn. SPbGU, 1992, no. 8, 19–24 | MR

[33] Cioranecu D., Oleinik O. A., Tronel G., “Korn's inequalitites for frame type structures and junctions with sharp estimates for the constants”, Asymptotic analysis, 8 (1994), 1–14 | MR

[34] Nazarov S. A., “Korn's inequalities for junctions of spatial bodies and thin rods”, Math. Meth. Appl. Sci., 20:3 (1997), 219–243 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[35] Nazarov S. A., “Samosopryazhennye ellipticheskie kraevye zadachi. Polinominalnoe svoistvo i formalno polozhitelnye operatory”, Problemy matem. analiza, no. 16, Izd-vo SPbGU, SPb, 1997, 167–192

[36] Kondratev V. A., Oleinik O. A., “O zavisimosti konstant v neravenstve Korna ot parametra, kharakterizuyuschego geometriyu oblasti”, UMN, 44:6 (1989), 157–158 | MR | Zbl

[37] Kondratev V. A., Oleinik O. A., “Kraevye zadachi dlya sistemy teorii uprugosti v neogranichennykh oblastyakh. Neravenstvo Korna”, UMN, 43:5 (1988), 55–98 | MR

[38] Nazarov S. A., “Obosnovanie asimptoticheskoi teorii tonkikh sterzhnei. Integralnye i potochechnye otsenki”, Problemy matem. analiza, no. 17, Izd-vo SPbGU, SPb, 1997, 101–152 | MR

[39] Khardi G. G., Littlvud Dzh. E., Polia G., Neravenstva, IL, M., 1948