Resonator systems
Izvestiya. Mathematics , Tome 64 (2000) no. 3, pp. 487-529

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with a system of embedded resonators and a chain of two resonators. We prove that the Green functions of the corresponding Neumann boundary-value problems have poles with small imaginary parts. We find complete asymptotics for these poles and the corresponding eigenfunctions by the method of matched asymptotic expansions. We consider the cases when the limit value of the pole is an eigenfrequency either of a single limit volume or of two such volumes simultaneously. We show that the orders of smallness of the imaginary parts of the poles for systems are quite different from those for the classical Helmholtz resonator. We apply the asymptotics obtained to the scattering problem.
@article{IM2_2000_64_3_a1,
     author = {R. R. Gadyl'shin},
     title = {Resonator systems},
     journal = {Izvestiya. Mathematics },
     pages = {487--529},
     publisher = {mathdoc},
     volume = {64},
     number = {3},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_3_a1/}
}
TY  - JOUR
AU  - R. R. Gadyl'shin
TI  - Resonator systems
JO  - Izvestiya. Mathematics 
PY  - 2000
SP  - 487
EP  - 529
VL  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2000_64_3_a1/
LA  - en
ID  - IM2_2000_64_3_a1
ER  - 
%0 Journal Article
%A R. R. Gadyl'shin
%T Resonator systems
%J Izvestiya. Mathematics 
%D 2000
%P 487-529
%V 64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2000_64_3_a1/
%G en
%F IM2_2000_64_3_a1
R. R. Gadyl'shin. Resonator systems. Izvestiya. Mathematics , Tome 64 (2000) no. 3, pp. 487-529. http://geodesic.mathdoc.fr/item/IM2_2000_64_3_a1/