Some remarks on the $\ell$-adic regulator. IV
Izvestiya. Mathematics , Tome 64 (2000) no. 2, pp. 265-310

Voir la notice de l'article provenant de la source Math-Net.Ru

We continue to examine the bilinear form $U(K_n)\times U(K_n)\to\mathbb{Q}_\ell$, $(x,y)\to\operatorname{Sp}_{K_n/\mathbb{Q}_\ell}(\log x\cdot\log y)$ where $K_n$ runs through all intermediate subfields of the cyclotomic $\mathbb{Z}_\ell$-extension $K_\infty/K$, $K$ is an arbitrary finite extension of $\mathbb{Q}_\ell$, and $\log$ is the $\ell$-adic logarithm. We give applications to the weak conjecture on the $\ell$-adic regulator. In particular, we prove this conjecture for $\ell$-extensions of Abelian number fields.
@article{IM2_2000_64_2_a2,
     author = {L. V. Kuz'min},
     title = {Some remarks on the $\ell$-adic regulator. {IV}},
     journal = {Izvestiya. Mathematics },
     pages = {265--310},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_2_a2/}
}
TY  - JOUR
AU  - L. V. Kuz'min
TI  - Some remarks on the $\ell$-adic regulator. IV
JO  - Izvestiya. Mathematics 
PY  - 2000
SP  - 265
EP  - 310
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2000_64_2_a2/
LA  - en
ID  - IM2_2000_64_2_a2
ER  - 
%0 Journal Article
%A L. V. Kuz'min
%T Some remarks on the $\ell$-adic regulator. IV
%J Izvestiya. Mathematics 
%D 2000
%P 265-310
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2000_64_2_a2/
%G en
%F IM2_2000_64_2_a2
L. V. Kuz'min. Some remarks on the $\ell$-adic regulator. IV. Izvestiya. Mathematics , Tome 64 (2000) no. 2, pp. 265-310. http://geodesic.mathdoc.fr/item/IM2_2000_64_2_a2/