Some remarks on the $\ell$-adic regulator. IV
Izvestiya. Mathematics , Tome 64 (2000) no. 2, pp. 265-310
Voir la notice de l'article provenant de la source Math-Net.Ru
We continue to examine the bilinear form $U(K_n)\times U(K_n)\to\mathbb{Q}_\ell$, $(x,y)\to\operatorname{Sp}_{K_n/\mathbb{Q}_\ell}(\log x\cdot\log y)$ where $K_n$ runs through all intermediate subfields of the cyclotomic $\mathbb{Z}_\ell$-extension $K_\infty/K$, $K$ is an arbitrary finite extension of $\mathbb{Q}_\ell$, and $\log$ is the $\ell$-adic logarithm. We give applications to the weak conjecture on the $\ell$-adic regulator. In particular, we prove this conjecture for $\ell$-extensions of Abelian number fields.
@article{IM2_2000_64_2_a2,
author = {L. V. Kuz'min},
title = {Some remarks on the $\ell$-adic regulator. {IV}},
journal = {Izvestiya. Mathematics },
pages = {265--310},
publisher = {mathdoc},
volume = {64},
number = {2},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_2_a2/}
}
L. V. Kuz'min. Some remarks on the $\ell$-adic regulator. IV. Izvestiya. Mathematics , Tome 64 (2000) no. 2, pp. 265-310. http://geodesic.mathdoc.fr/item/IM2_2000_64_2_a2/