The index of an equivariant vector field and addition theorems for Pontryagin classes
Izvestiya. Mathematics , Tome 64 (2000) no. 2, pp. 223-247

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we construct a theory of indices of Morse–Bott vector fields on a manifold and use it to solve a famous localization problem for the transfer map. As a consequence, we obtain addition theorems for universal Pontryagin classes in cobordisms. This enables us to complete the construction of the theory of universal characteristic classes, which was begun more than twenty years ago.
@article{IM2_2000_64_2_a0,
     author = {V. M. Buchstaber and K. E. Feldman},
     title = {The index of an equivariant vector field and addition theorems for {Pontryagin} classes},
     journal = {Izvestiya. Mathematics },
     pages = {223--247},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_2_a0/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - K. E. Feldman
TI  - The index of an equivariant vector field and addition theorems for Pontryagin classes
JO  - Izvestiya. Mathematics 
PY  - 2000
SP  - 223
EP  - 247
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2000_64_2_a0/
LA  - en
ID  - IM2_2000_64_2_a0
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A K. E. Feldman
%T The index of an equivariant vector field and addition theorems for Pontryagin classes
%J Izvestiya. Mathematics 
%D 2000
%P 223-247
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2000_64_2_a0/
%G en
%F IM2_2000_64_2_a0
V. M. Buchstaber; K. E. Feldman. The index of an equivariant vector field and addition theorems for Pontryagin classes. Izvestiya. Mathematics , Tome 64 (2000) no. 2, pp. 223-247. http://geodesic.mathdoc.fr/item/IM2_2000_64_2_a0/