The index of an equivariant vector field and addition theorems for Pontryagin classes
Izvestiya. Mathematics , Tome 64 (2000) no. 2, pp. 223-247.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we construct a theory of indices of Morse–Bott vector fields on a manifold and use it to solve a famous localization problem for the transfer map. As a consequence, we obtain addition theorems for universal Pontryagin classes in cobordisms. This enables us to complete the construction of the theory of universal characteristic classes, which was begun more than twenty years ago.
@article{IM2_2000_64_2_a0,
     author = {V. M. Buchstaber and K. E. Feldman},
     title = {The index of an equivariant vector field and addition theorems for {Pontryagin} classes},
     journal = {Izvestiya. Mathematics },
     pages = {223--247},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_2_a0/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - K. E. Feldman
TI  - The index of an equivariant vector field and addition theorems for Pontryagin classes
JO  - Izvestiya. Mathematics 
PY  - 2000
SP  - 223
EP  - 247
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2000_64_2_a0/
LA  - en
ID  - IM2_2000_64_2_a0
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A K. E. Feldman
%T The index of an equivariant vector field and addition theorems for Pontryagin classes
%J Izvestiya. Mathematics 
%D 2000
%P 223-247
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2000_64_2_a0/
%G en
%F IM2_2000_64_2_a0
V. M. Buchstaber; K. E. Feldman. The index of an equivariant vector field and addition theorems for Pontryagin classes. Izvestiya. Mathematics , Tome 64 (2000) no. 2, pp. 223-247. http://geodesic.mathdoc.fr/item/IM2_2000_64_2_a0/

[1] Atiyah M. F., “Characters and cohomology of finite groups”, Publ. Math. I.H.E.S., 1961, no. 9, 23–64 | MR

[2] Becker J. C., “Characteristic classes and $K$-theory”, Lecture Notes in Mathematics, 428, Springer-Verlag, 1974, 132–143 | MR

[3] Becker J. C., Gottlieb D. H., “The transfer map and fiber bundles”, Topology, 14:1 (1975), 1–12 | DOI | MR | Zbl

[4] Bressler P., Evens S., “The Shubert calculas, braid relations, and generalized cohomology”, Trans. Amer. Math. Soc., 317 (1990), 799–811 | DOI | MR | Zbl

[5] Brumfiel G., Madsen I., “Evaluation of the transfer and the universal surgery classes”, Inventiones math., 32 (1976), 133–169 | DOI | MR | Zbl

[6] Bukhshtaber V. M., “Topologicheskie prilozheniya teorii dvuznachnykh formalnykh grupp”, Izv. AN SSSR. Ser. matem., 42:1 (1978), 130–184 | MR | Zbl

[7] Bukhshtaber V. M., “Kharakteristicheskie klassy v kobordizamakh i prilozheniya teorii odnoznachnykh i dvuznachnykh grupp”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 10, VINITI, M., 1978, 5–178 | MR

[8] Bukhshtaber V. M., “Transfer Bekkera–Gottliba”, Prilozh. 3 v knige: Sneit V., Algebraicheskii kobordizm i $K$-teoriya, Mir, M., 1983 | MR

[9] Bukhshtaber V. M., Feldman K. E., “Formula slozheniya dlya pervogo polutselogo klassa Pontryagina v kompleksnykh kobordizmakh”, UMN, 52:6 (1997), 151–152 | MR | Zbl

[10] Dold A., “The fixed point index of fibre-preserving maps”, Inventiones math., 25 (1974), 281–297 | DOI | MR | Zbl

[11] Feshbach M., “The transfer and compact Lie groups”, Trans. of the Am. Math. Soc., 251 (1979), 139–169 | DOI | MR

[12] Fulton W., MacPherson R., “Characteristic classes of direct image bundles for covering maps”, Annals of Mathematics, 125 (1987), 1–92 | DOI | MR | Zbl

[13] Milnor Dzh., Stashef Dzh., Kharakteristicheskie klassy, Mir, M., 1979 | MR | Zbl

[14] Milnor Dzh., Uolles A., Differentsialnaya topologiya. Nachalnyi kurs, Mir, M., 1972 | MR | Zbl

[15] Novikov S. P., “Metody algebraicheskoi topologii s tochki zreniya teorii kobordizmov”, Izv. AN SSSR. Ser. matem., 31:4 (1967), 885–951

[16] Postnikov M. M., Vvedenie v teoriyu Morsa, Nauka, M., 1971 | MR

[17] Sneit V., Algebraicheskii kobordizm i $K$-teoriya, Mir, M., 1983 | MR

[18] Verona A., “Triangulation of stratified fibre bundles”, Manu. Math., 30 (1979/80), 425–445 | DOI | MR

[19] Uaitkhed Dzh., Noveishie dostizheniya v teorii gomotopii, Mir, M., 1974 | MR

[20] Witten E., “Suppersymmetry and Morse theory”, J. Differential Geometry, 17 (1982), 661–692 | MR | Zbl