The index of an equivariant vector field and addition theorems for Pontryagin classes
Izvestiya. Mathematics , Tome 64 (2000) no. 2, pp. 223-247
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we construct a theory of indices of Morse–Bott vector fields on a manifold and use it to solve a famous localization problem for the transfer map. As a consequence, we obtain addition theorems for universal Pontryagin classes in cobordisms. This enables us to complete the construction of the theory of universal characteristic classes, which was begun more than twenty years ago.
@article{IM2_2000_64_2_a0,
author = {V. M. Buchstaber and K. E. Feldman},
title = {The index of an equivariant vector field and addition theorems for {Pontryagin} classes},
journal = {Izvestiya. Mathematics },
pages = {223--247},
publisher = {mathdoc},
volume = {64},
number = {2},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_2_a0/}
}
TY - JOUR AU - V. M. Buchstaber AU - K. E. Feldman TI - The index of an equivariant vector field and addition theorems for Pontryagin classes JO - Izvestiya. Mathematics PY - 2000 SP - 223 EP - 247 VL - 64 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2000_64_2_a0/ LA - en ID - IM2_2000_64_2_a0 ER -
V. M. Buchstaber; K. E. Feldman. The index of an equivariant vector field and addition theorems for Pontryagin classes. Izvestiya. Mathematics , Tome 64 (2000) no. 2, pp. 223-247. http://geodesic.mathdoc.fr/item/IM2_2000_64_2_a0/