Laws of large numbers in non-Archimedean probability theory
Izvestiya. Mathematics , Tome 64 (2000) no. 1, pp. 207-219

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider non-Kolmogorov probability models, namely, models with $p$-adic probabilities. We obtain an analogue of Bernoulli's theorem for symmetric schemes.
@article{IM2_2000_64_1_a7,
     author = {A. Yu. Khrennikov},
     title = {Laws of large numbers in {non-Archimedean} probability theory},
     journal = {Izvestiya. Mathematics },
     pages = {207--219},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a7/}
}
TY  - JOUR
AU  - A. Yu. Khrennikov
TI  - Laws of large numbers in non-Archimedean probability theory
JO  - Izvestiya. Mathematics 
PY  - 2000
SP  - 207
EP  - 219
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a7/
LA  - en
ID  - IM2_2000_64_1_a7
ER  - 
%0 Journal Article
%A A. Yu. Khrennikov
%T Laws of large numbers in non-Archimedean probability theory
%J Izvestiya. Mathematics 
%D 2000
%P 207-219
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a7/
%G en
%F IM2_2000_64_1_a7
A. Yu. Khrennikov. Laws of large numbers in non-Archimedean probability theory. Izvestiya. Mathematics , Tome 64 (2000) no. 1, pp. 207-219. http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a7/