Laws of large numbers in non-Archimedean probability theory
Izvestiya. Mathematics , Tome 64 (2000) no. 1, pp. 207-219
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider non-Kolmogorov probability models, namely, models with $p$-adic probabilities. We obtain an analogue of Bernoulli's theorem for symmetric schemes.
@article{IM2_2000_64_1_a7,
author = {A. Yu. Khrennikov},
title = {Laws of large numbers in {non-Archimedean} probability theory},
journal = {Izvestiya. Mathematics },
pages = {207--219},
publisher = {mathdoc},
volume = {64},
number = {1},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a7/}
}
A. Yu. Khrennikov. Laws of large numbers in non-Archimedean probability theory. Izvestiya. Mathematics , Tome 64 (2000) no. 1, pp. 207-219. http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a7/