Laws of large numbers in non-Archimedean probability theory
Izvestiya. Mathematics , Tome 64 (2000) no. 1, pp. 207-219.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider non-Kolmogorov probability models, namely, models with $p$-adic probabilities. We obtain an analogue of Bernoulli's theorem for symmetric schemes.
@article{IM2_2000_64_1_a7,
     author = {A. Yu. Khrennikov},
     title = {Laws of large numbers in {non-Archimedean} probability theory},
     journal = {Izvestiya. Mathematics },
     pages = {207--219},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a7/}
}
TY  - JOUR
AU  - A. Yu. Khrennikov
TI  - Laws of large numbers in non-Archimedean probability theory
JO  - Izvestiya. Mathematics 
PY  - 2000
SP  - 207
EP  - 219
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a7/
LA  - en
ID  - IM2_2000_64_1_a7
ER  - 
%0 Journal Article
%A A. Yu. Khrennikov
%T Laws of large numbers in non-Archimedean probability theory
%J Izvestiya. Mathematics 
%D 2000
%P 207-219
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a7/
%G en
%F IM2_2000_64_1_a7
A. Yu. Khrennikov. Laws of large numbers in non-Archimedean probability theory. Izvestiya. Mathematics , Tome 64 (2000) no. 1, pp. 207-219. http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a7/

[1] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR

[2] Khrennikov A. Yu., “$p$-adicheskaya veroyatnost i statistika”, Dokl. RAN, 332:6 (1992), 1075–1079 | MR

[3] Khrennikov A. Yu., “Nearkhimedova veroyatnost”, Sb. statei K 70-letiyu akademika V. S. Vladimirova, Tr. MIAN, 203, Nauka, M., 1994, 184–193 | Zbl

[4] Khrennikov A. Yu., “$p$-adicheskaya teoriya veroyatnostei i ee prilozheniya. Printsip statisticheskoi stabilizatsii chastot”, TMF, 97:3 (1993), 348–363 | MR | Zbl

[5] Khrennikov A. Yu., $p$-adic valued distributions in mathematical physics, Kluwer Academic Publ., Dordrecht–Boston–London, 1994 | MR | Zbl

[6] Schikhov W., Ultrametric Calculus, Cambridge Univ. Press, Cambridge, 1984 | MR

[7] Monna A., Analyse non-Archimedienne, Springer, Berlin, 1970 | MR | Zbl

[8] Khrennikov A. Yu., “Obobschennye funktsii i gaussovskie kontinualnye integraly po nearkhimedovym funktsionalnym prostranstvam”, Izv. RAN. Ser. matem., 55:4 (1991), 780–814 | MR

[9] Mahler K., $p$-adic numbers and their functions, Cambridge Univ. Press, Cambridge, 1980 | MR