Tauberian theorem for generalized multiplicative convolutions
Izvestiya. Mathematics , Tome 64 (2000) no. 1, pp. 35-92

Voir la notice de l'article provenant de la source Math-Net.Ru

The following problem is discussed. Let $f$ be a generalized function of slow growth with support on the positive semi-axis, and let $\varphi_k$ be a sequence of “test” functions such that $\varphi_k\to\varphi_0$ as $k\to+\infty$ in some function space. Assume that the following limit exists: $\frac1{\rho(k)}(f(kt),\varphi_k(t))\to c$ where $\rho(k)$ is a regularly varying function. Find conditions under which the limit $\frac1{\rho(k)}(f(kt),\varphi(t))\to c_\varphi$, $k\to+\infty$, exists for all test functions $\varphi$. We state and prove theorems that solve this problem and apply them to the problem of existence of quasi-asymptotics for the solution of an ordinary differential equation with variable coefficients. We prove Abelian and Tauberian theorems for a wide class of integral transformations of distributions, for example, the generalized Stieltjes integral transformation.
@article{IM2_2000_64_1_a1,
     author = {Yu. N. Drozhzhinov and B. I. Zavialov},
     title = {Tauberian theorem for generalized multiplicative convolutions},
     journal = {Izvestiya. Mathematics },
     pages = {35--92},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a1/}
}
TY  - JOUR
AU  - Yu. N. Drozhzhinov
AU  - B. I. Zavialov
TI  - Tauberian theorem for generalized multiplicative convolutions
JO  - Izvestiya. Mathematics 
PY  - 2000
SP  - 35
EP  - 92
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a1/
LA  - en
ID  - IM2_2000_64_1_a1
ER  - 
%0 Journal Article
%A Yu. N. Drozhzhinov
%A B. I. Zavialov
%T Tauberian theorem for generalized multiplicative convolutions
%J Izvestiya. Mathematics 
%D 2000
%P 35-92
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a1/
%G en
%F IM2_2000_64_1_a1
Yu. N. Drozhzhinov; B. I. Zavialov. Tauberian theorem for generalized multiplicative convolutions. Izvestiya. Mathematics , Tome 64 (2000) no. 1, pp. 35-92. http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a1/