Tauberian theorem for generalized multiplicative convolutions
Izvestiya. Mathematics , Tome 64 (2000) no. 1, pp. 35-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following problem is discussed. Let $f$ be a generalized function of slow growth with support on the positive semi-axis, and let $\varphi_k$ be a sequence of “test” functions such that $\varphi_k\to\varphi_0$ as $k\to+\infty$ in some function space. Assume that the following limit exists: $\frac1{\rho(k)}(f(kt),\varphi_k(t))\to c$ where $\rho(k)$ is a regularly varying function. Find conditions under which the limit $\frac1{\rho(k)}(f(kt),\varphi(t))\to c_\varphi$, $k\to+\infty$, exists for all test functions $\varphi$. We state and prove theorems that solve this problem and apply them to the problem of existence of quasi-asymptotics for the solution of an ordinary differential equation with variable coefficients. We prove Abelian and Tauberian theorems for a wide class of integral transformations of distributions, for example, the generalized Stieltjes integral transformation.
@article{IM2_2000_64_1_a1,
     author = {Yu. N. Drozhzhinov and B. I. Zavialov},
     title = {Tauberian theorem for generalized multiplicative convolutions},
     journal = {Izvestiya. Mathematics },
     pages = {35--92},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a1/}
}
TY  - JOUR
AU  - Yu. N. Drozhzhinov
AU  - B. I. Zavialov
TI  - Tauberian theorem for generalized multiplicative convolutions
JO  - Izvestiya. Mathematics 
PY  - 2000
SP  - 35
EP  - 92
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a1/
LA  - en
ID  - IM2_2000_64_1_a1
ER  - 
%0 Journal Article
%A Yu. N. Drozhzhinov
%A B. I. Zavialov
%T Tauberian theorem for generalized multiplicative convolutions
%J Izvestiya. Mathematics 
%D 2000
%P 35-92
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a1/
%G en
%F IM2_2000_64_1_a1
Yu. N. Drozhzhinov; B. I. Zavialov. Tauberian theorem for generalized multiplicative convolutions. Izvestiya. Mathematics , Tome 64 (2000) no. 1, pp. 35-92. http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a1/

[1] Drozhzhinov Yu. N., Zavyalov B. I., “Tauberova teorema tipa Vinera dlya obobschennykh funktsii medlennogo rosta”, Matem. sb., 189:7 (1998), 91–130 | MR | Zbl

[2] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, Vyp. 1, Fizmatgiz, M., 1959

[3] Vladimirov V. S., Drozhzhinov Yu. N., Zavyalov B. I., Mnogomernye tauberovy teoremy dlya obobschennykh funktsii, Nauka, M., 1986 | MR

[4] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985 | MR | Zbl

[5] Wiener N., “Tauberian theorems”, Ann. of Math., 33:1 (1932), 1–100 | DOI | MR | Zbl

[6] Viner N., Integral Fure i nekotorye ego primeneniya, Fizmatgiz, M., 1963

[7] Karamata J., “Neuer Beweis und Verallgemeinerung der Tauberschen Sätze, welche die Laplacesche und Stieltjesche Transformation betreffen”, Journ. Reine und Angew. Math., 164:1 (1931), 27–29 | MR

[8] Beurling A., “Sur les inte'grales de Tourier absolument convergentas”, Helsinki Comp. Rend. Gie'me Congr. Math. Scand., 1938 | Zbl

[9] Ganelius T., Tauberian remeinder theorems, Springer-Verlag, Berlin–Heidelberg–N. Y., 1971 | MR | Zbl

[10] Korenblyum B. I., “Obobschenie tauberovoi teoremy Vinera i garmonicheskii analiz bystrorastuschikh funktsii”, Tr. Mosk. matem. ob-va, 7 (1958), 121–148 | MR

[11] Komech A. I., “Uravneniya s odnorodnymi yadrami i preobrazovanie Mellina obobschennykh funktsii”, TMF, 27:2 (1976), 149–162 | MR | Zbl

[12] Zemanyan A. G., Integralnye preobrazovaniya obobschennykh funktsii, Nauka, M., 1974 | MR

[13] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR

[14] Pilipović S., Stanković B., “Wiener Tauberian Theorems for Distribution”, J. London Math. Soc., 47:2 (1993), 507–515 | DOI | MR | Zbl

[15] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR | Zbl

[16] Brychkov Yu. A., Preobrazovaniya Mellina, T. I, VTs RAN, M., 1997

[17] Tröger G., “A Tauberian Theorem for the Generalized $S_2$-Transform”, Math. Nachr., 143 (1989), 55–67 | DOI | MR | Zbl

[18] Boas R. P., Widder D. V., “The Iterated Stieltjes Transform”, Trans. Amer. Math. Soc., 45 (1939), 1–72 | DOI | MR | Zbl

[19] Pilipovič S., Stankovič B., Takači A., Asymptotic Behaviour and Stieltjes Transformation of Distributions, B. 116, Teubner Verlag, Leipzig, 1990 | Zbl

[20] Garnet Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984, S. 1–469 | MR | Zbl

[21] Drozhzhinov Yu. N., Zavyalov B. I., “Teoremy tipa Vinera dlya obobschennykh funktsii i integralnoe preobrazovanie Stiltesa”, Dokl. RAN, 363:2 (1998), 156–159 | MR

[22] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR