On four-sheeted polynomial mappings of~$\mathbb C^2$. II. The general case
Izvestiya. Mathematics , Tome 64 (2000) no. 1, pp. 1-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove that there are no four-sheeted polynomial mappings of $\mathbb C^2$ into itself whose Jacobian is a non-zero constant.
@article{IM2_2000_64_1_a0,
     author = {A. V. Domrina},
     title = {On four-sheeted polynomial mappings of~$\mathbb C^2$. {II.} {The} general case},
     journal = {Izvestiya. Mathematics },
     pages = {1--33},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a0/}
}
TY  - JOUR
AU  - A. V. Domrina
TI  - On four-sheeted polynomial mappings of~$\mathbb C^2$. II. The general case
JO  - Izvestiya. Mathematics 
PY  - 2000
SP  - 1
EP  - 33
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a0/
LA  - en
ID  - IM2_2000_64_1_a0
ER  - 
%0 Journal Article
%A A. V. Domrina
%T On four-sheeted polynomial mappings of~$\mathbb C^2$. II. The general case
%J Izvestiya. Mathematics 
%D 2000
%P 1-33
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a0/
%G en
%F IM2_2000_64_1_a0
A. V. Domrina. On four-sheeted polynomial mappings of~$\mathbb C^2$. II. The general case. Izvestiya. Mathematics , Tome 64 (2000) no. 1, pp. 1-33. http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a0/

[1] Vitushkin A. G., “On polynomial transformation of ${\mathbb C}^n$”, Manifolds (1973), Tokio Univ. Press, Tokio, 1975, 415–417 | MR | Zbl

[2] Bass H., Connell E. H., Wright D., “The Jacobian conjecture: reduction of degree and formal expansion of the inverse”, Bull. Amer. Math. Soc., 7:2 (1982), 287–330 | DOI | MR | Zbl

[3] Orevkov S. Yu., “O trekhlistnykh polinomialnykh otobrazheniyakh ${\mathbb C}^2$”, Izv. AN SSSR. Ser. matem., 50:6 (1986), 1231–1240 | MR | Zbl

[4] Domrina A. V., Orevkov S. Yu., “O chetyrekhlistnykh polinomialnykh otobrazheniyakh ${\mathbb C}^2$. I: Sluchai neprivodimoi krivoi vetvleniya”, Matem. zametki, 64:6 (1998), 847–862 | MR | Zbl