On four-sheeted polynomial mappings of $\mathbb C^2$. II. The general case
Izvestiya. Mathematics, Tome 64 (2000) no. 1, pp. 1-33
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we prove that there are no four-sheeted polynomial mappings of $\mathbb C^2$ into itself whose Jacobian is a non-zero constant.
@article{IM2_2000_64_1_a0,
author = {A. V. Domrina},
title = {On four-sheeted polynomial mappings of~$\mathbb C^2$. {II.} {The} general case},
journal = {Izvestiya. Mathematics},
pages = {1--33},
year = {2000},
volume = {64},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a0/}
}
A. V. Domrina. On four-sheeted polynomial mappings of $\mathbb C^2$. II. The general case. Izvestiya. Mathematics, Tome 64 (2000) no. 1, pp. 1-33. http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a0/
[1] Vitushkin A. G., “On polynomial transformation of ${\mathbb C}^n$”, Manifolds (1973), Tokio Univ. Press, Tokio, 1975, 415–417 | MR | Zbl
[2] Bass H., Connell E. H., Wright D., “The Jacobian conjecture: reduction of degree and formal expansion of the inverse”, Bull. Amer. Math. Soc., 7:2 (1982), 287–330 | DOI | MR | Zbl
[3] Orevkov S. Yu., “O trekhlistnykh polinomialnykh otobrazheniyakh ${\mathbb C}^2$”, Izv. AN SSSR. Ser. matem., 50:6 (1986), 1231–1240 | MR | Zbl
[4] Domrina A. V., Orevkov S. Yu., “O chetyrekhlistnykh polinomialnykh otobrazheniyakh ${\mathbb C}^2$. I: Sluchai neprivodimoi krivoi vetvleniya”, Matem. zametki, 64:6 (1998), 847–862 | MR | Zbl