Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1999_63_6_a6, author = {S. A. Shkarin}, title = {An infinite-dimensional separable {pre-Hilbert} space non-homeomorphic to any of its closed hyperplanes}, journal = {Izvestiya. Mathematics }, pages = {1263--1273}, publisher = {mathdoc}, volume = {63}, number = {6}, year = {1999}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_6_a6/} }
TY - JOUR AU - S. A. Shkarin TI - An infinite-dimensional separable pre-Hilbert space non-homeomorphic to any of its closed hyperplanes JO - Izvestiya. Mathematics PY - 1999 SP - 1263 EP - 1273 VL - 63 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1999_63_6_a6/ LA - en ID - IM2_1999_63_6_a6 ER -
S. A. Shkarin. An infinite-dimensional separable pre-Hilbert space non-homeomorphic to any of its closed hyperplanes. Izvestiya. Mathematics , Tome 63 (1999) no. 6, pp. 1263-1273. http://geodesic.mathdoc.fr/item/IM2_1999_63_6_a6/
[1] Kadets M. I., “Dokazatelstvo topologicheskoi ekvivalentnosti vsekh separabelnykh beskonechnomernykh prostranstv Banakha”, Funkts. analiz i ego prilozh., 1:1 (1967), 61–70 | MR | Zbl
[2] Gowers W. T., Maurey B., “The unconditional basis sequence problem”, J. Amer. Math. Soc., 1993, no. 4, 851–874 | DOI | MR | Zbl
[3] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR
[4] Okstobi Dzh., Mera i kategoriya, Mir, M., 1976
[5] Aleksandrov P. S., Pasynkov B. A., Vvedenie v teoriyu razmernosti, Nauka, M., 1975
[6] Robertson A., Robertson V., Topologicheskie vektornye prostranstva, Mir, M., 1967 | MR | Zbl
[7] Pol R., “An infinite dimensional pre-Hilbert space non-homeomorphic to its owm square”, Proc. Amer. Math. Soc., 90:3 (1984), 450–454 | DOI | MR | Zbl
[8] Van-Mill J., “An infinite dimensional pre-Hilbert space all bounded linear operators on which are simple”, Colloq. Math., 54:1 (1987), 29–37 | MR | Zbl
[9] Kuratovskii K., Obschaya topologiya, 1, Mir, M., 1966 | MR
[10] Marciszewski W., “An infinite dimensional pre-Hilbert space without a continuous map on its own square”, Bull. Acad. Polon. Sci. Ser. math., 31:9 (1983), 393–396 | MR
[11] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR