Some remarks on the $\ell$-adic regulator.~III
Izvestiya. Mathematics , Tome 63 (1999) no. 6, pp. 1089-1138

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K$ be a finite extension of the field of rational $\ell$-adic numbers $\mathbb Q_\ell$, and let $K_\infty$ be the cyclotomic $\mathbb Z_\ell$-extension of $K$. For an intermediate field $K_n$ in $K_\infty/K$, let $U(K_n)$ be the group of units of $K_n$ and put $U(K_n)^\perp=\{x\in K_n\mid\operatorname{Sp}_{K_n/\mathbb Q_\ell}(x\log u)\in {\mathbb Z}_\ell$ for all $u\in U(K_n)\}$, where $\log\colon U(K_n)\to K_n$ is the $\ell$-adic logarithm. We give an approximate characterization of $U(K_n)^\perp$. The proofs are based on the use of Laurent series with integer coefficients and infinite principal part.
@article{IM2_1999_63_6_a1,
     author = {L. V. Kuz'min},
     title = {Some remarks on the $\ell$-adic {regulator.~III}},
     journal = {Izvestiya. Mathematics },
     pages = {1089--1138},
     publisher = {mathdoc},
     volume = {63},
     number = {6},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_6_a1/}
}
TY  - JOUR
AU  - L. V. Kuz'min
TI  - Some remarks on the $\ell$-adic regulator.~III
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 1089
EP  - 1138
VL  - 63
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_6_a1/
LA  - en
ID  - IM2_1999_63_6_a1
ER  - 
%0 Journal Article
%A L. V. Kuz'min
%T Some remarks on the $\ell$-adic regulator.~III
%J Izvestiya. Mathematics 
%D 1999
%P 1089-1138
%V 63
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_6_a1/
%G en
%F IM2_1999_63_6_a1
L. V. Kuz'min. Some remarks on the $\ell$-adic regulator.~III. Izvestiya. Mathematics , Tome 63 (1999) no. 6, pp. 1089-1138. http://geodesic.mathdoc.fr/item/IM2_1999_63_6_a1/