Non-Archimedean analogues of orthogonal and symmetric operators
Izvestiya. Mathematics , Tome 63 (1999) no. 6, pp. 1063-1087.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study orthogonal and symmetric operators on non-Archimedean Hilbert spaces in connection with the $p$-adic quantization. This quantization describes measurements with finite precision. Symmetric (bounded) operators on $p$-adic Hilbert spaces represent physical observables. We study the spectral properties of one of the most important quantum operators, namely, the position operator (which is represented on $p$-adic Hilbert $L_2$-space with respect to the $p$-adic Gaussian measure). Orthogonal isometric isomorphisms of $p$-adic Hilbert spaces preserve the precision of measurements. We study properties of orthogonal operators. It is proved that every orthogonal operator on non-Archimedean Hilbert space is continuous. However, there are discontinuous operators with dense domain of definition that preserve the inner product. There exist non-isometric orthogonal operators. We describe some classes of orthogonal isometric operators on finite-dimensional spaces. We study some general questions in the theory of non-Archimedean Hilbert spaces (in particular, general connections between the topology, norm and inner product).
@article{IM2_1999_63_6_a0,
     author = {S. A. Albeverio and J. M. Bayod and C. Perez-Garsia and A. Yu. Khrennikov and R. Cianci},
     title = {Non-Archimedean analogues of orthogonal and symmetric operators},
     journal = {Izvestiya. Mathematics },
     pages = {1063--1087},
     publisher = {mathdoc},
     volume = {63},
     number = {6},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_6_a0/}
}
TY  - JOUR
AU  - S. A. Albeverio
AU  - J. M. Bayod
AU  - C. Perez-Garsia
AU  - A. Yu. Khrennikov
AU  - R. Cianci
TI  - Non-Archimedean analogues of orthogonal and symmetric operators
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 1063
EP  - 1087
VL  - 63
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_6_a0/
LA  - en
ID  - IM2_1999_63_6_a0
ER  - 
%0 Journal Article
%A S. A. Albeverio
%A J. M. Bayod
%A C. Perez-Garsia
%A A. Yu. Khrennikov
%A R. Cianci
%T Non-Archimedean analogues of orthogonal and symmetric operators
%J Izvestiya. Mathematics 
%D 1999
%P 1063-1087
%V 63
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_6_a0/
%G en
%F IM2_1999_63_6_a0
S. A. Albeverio; J. M. Bayod; C. Perez-Garsia; A. Yu. Khrennikov; R. Cianci. Non-Archimedean analogues of orthogonal and symmetric operators. Izvestiya. Mathematics , Tome 63 (1999) no. 6, pp. 1063-1087. http://geodesic.mathdoc.fr/item/IM2_1999_63_6_a0/

[1] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR

[2] Khrennikov A. Yu., $p$-adic valued distributions in mathematical physics, Kluwer Academic Publishers, Dordrecht, 1994 | MR | Zbl

[3] Vladimirov V. S., Volovich I. V., “$p$-adic quantum mechanics”, Commun. Math. Phys., 123 (1989), 659–676 | DOI | MR | Zbl

[4] Volovich I. V., Number theory as the ultimate physical theory, Preprint CERN. TH. 4781/87, Geneva, 1987

[5] Volovich I. V., “$p$-adic strings”, Class. Quant. Gravity, 4 (1987), 83–87 | DOI | MR

[6] Frampton P. H., Okada Y., “$p$-adic string $N$-point function”, Phys. Rev. Lett. B, 60 (1988), 484–486 | DOI | MR

[7] Freund P. G. O., Olson M., “Non-Archimedean strings”, Phys. Lett. B, 199 (1987), 186–190 | DOI | MR

[8] Freund P. G. O., Witten E., “Adelic string amplitudes”, Phys. Lett. B, 199 (1987), 191–195 | DOI | MR

[9] Vladimirov V. S., “Adelnye formuly dlya gamma- i beta-funktsii popolnenii polei algebraicheskikh chisel i ikh primeneniya k strunnym amplitudam”, Izv. RAN. Ser. matem., 60:1 (1996), 63–86 | MR | Zbl

[10] Albeverio S., Khrennikov A. Yu., “Representation of the Weyl group in spaces of square integrable functions with respect to $p$-adic valued Gaussian distributions”, J. of Phys. A, 29 (1996), 5515–5527 | DOI | MR | Zbl

[11] Albeverio S., Khrennikov A. Yu., “$p$-adic Hilbert space representation of quantum systems with an infinite number of degress of freedom”, Int. J. of Modern Phys., 10:13/14 (1996), 1665–1673 | DOI | MR

[12] Aref'eva I. Ya., Dragovich B., Frampton P. H., Volovich I. V., “The wave function of the universe and $p$-adic gravity”, Int. J. of Modern Phys. A, 6:24 (1991), 4341–4358 | DOI | MR | Zbl

[13] Dragovic B., “Adelic wave function of the universe”, Proc. 3-d A. Friedmann Int. Seminar on Grav. and Cosmology, St.-Petersburg Univ. Press, St.-Petersburg, 1995

[14] Dragovich B., “Adelic harmonic oscillator”, Int. J. Mod. Phys. A, 10 (1995), 2349–2365 | DOI | MR | Zbl

[15] Khrennikov A. Yu., “Matematicheskie metody nearkhimedovoi fiziki”, UMN, 45:4 (1990), 79–110 | MR | Zbl

[16] Khrennikov A. Yu., “Obobschennye funktsii na nearkhimedovom superprostranstve”, Izv. AN SSSR. Ser. matem., 55:6 (1991), 1257–1286

[17] Khrennikov A. Yu., “$p$-adic quantum mechanics with $p$-adic valued functions”, J. Math. Phys., 32:4 (1991), 932–937 | DOI | MR | Zbl

[18] Khrennikov A. Yu., “Statistical interpretation of $p$-adic quantum theories with $p$-adic valued wave functions”, J. Math. Phys., 36:12 (1995), 6625–6632 | DOI | MR | Zbl

[19] De Grande– De Kimpe N., Khrennikov A. Yu., “The non-Archimedean Laplace transform”, Bull. Belgian Math. Soc., 3 (1996), 225–237 | MR | Zbl

[20] Kalisch G. K., “On $p$-adic Hilbert spaces”, Ann. of Math., 48 (1947), 180–192 | DOI | MR | Zbl

[21] Springer T. A., “Quadratic forms over fields with a discrete valuation. 1; 2”, Proc. Kon. Ned. Akad. v. Wetensch., 58 (1955), 352–362 | MR

[22] Van Der Put M., “Espaces de Banach non-Archimediennes”, Bull. Soc. Math. France, 97 (1974), 309–320 | MR

[23] Treiber D., Beiträge zur nicht-archimedischen funktional analysis, Dissertation an der Univ. Köln, 1971 | Zbl

[24] Bayod J. M., Productos internos en espacios normados no Arquimedianos, Univ. de Bilbao Press, Bilbao, 1976

[25] Monna A., Analyse non-Archimedienne, Springer, New York, 1970 | MR | Zbl

[26] Narici L., Beckenstein E., Bachman G., Functional analysis and valuation theory, Marcel Dekker, Inc., New York, 1971 | MR | Zbl

[27] Van Rooij A., Non-archimedean functional analysis, Marcel Dekker, Inc., New York, 1978 | MR

[28] Schikhov W., Ultrametric calculus, Cambrige Univ. Press, Cambrige, 1984 | MR

[29] Kakol J., Perez-Garsia C., Schikhov W. H., “Cardinality and Mackey topologies of non-Archimedean Banach and Frechet spaces”, Bull. Pol. Acad. Sci. Math., 44 (1996), 131–141 | MR | Zbl

[30] Sierpinski W., Elementary theory of numbers, Panstwowe Wydawnistwo Naukowe, Warszawa, 1964 | MR

[31] Khrennikov A. Yu., “The ultrametric Hilbert-space description of quantum measurements with a finite exachness”, Foundation of Physics, 26:8 (1996), 1033–1054 | DOI | MR

[32] Escassut A., Analytic elements in $p$-adic analysis, World Scientific, Singapore, 1995 | MR | Zbl

[33] Schikhov W. H., “Locally convex spaces over non-spherically complete valued fields. I; II”, Bull. Soc. Math. Belgique, 38 (1986), 187–224