Homogenization of parabolic equations with contrasting coefficients
Izvestiya. Mathematics , Tome 63 (1999) no. 5, pp. 1015-1061

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider non-stationary diffusion problems in a periodic medium with inclusions filled with a material of small conductivity. We propose homogenized equations whose solutions approximate those of the problems under consideration. We prove estimates for the accuracy of this approximation as the period of the medium and the conductivity coefficient tend to zero. The form of the homogenized equations and the accuracy estimates depend essentially on the asymptotic behaviour of the conductivity coefficient in relation to the square of the period.
@article{IM2_1999_63_5_a6,
     author = {G. V. Sandrakov},
     title = {Homogenization of parabolic equations with contrasting coefficients},
     journal = {Izvestiya. Mathematics },
     pages = {1015--1061},
     publisher = {mathdoc},
     volume = {63},
     number = {5},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_5_a6/}
}
TY  - JOUR
AU  - G. V. Sandrakov
TI  - Homogenization of parabolic equations with contrasting coefficients
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 1015
EP  - 1061
VL  - 63
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_5_a6/
LA  - en
ID  - IM2_1999_63_5_a6
ER  - 
%0 Journal Article
%A G. V. Sandrakov
%T Homogenization of parabolic equations with contrasting coefficients
%J Izvestiya. Mathematics 
%D 1999
%P 1015-1061
%V 63
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_5_a6/
%G en
%F IM2_1999_63_5_a6
G. V. Sandrakov. Homogenization of parabolic equations with contrasting coefficients. Izvestiya. Mathematics , Tome 63 (1999) no. 5, pp. 1015-1061. http://geodesic.mathdoc.fr/item/IM2_1999_63_5_a6/