Almost-representations and asymptotic representations of discrete groups
Izvestiya. Mathematics , Tome 63 (1999) no. 5, pp. 995-1014

Voir la notice de l'article provenant de la source Math-Net.Ru

We define a new property of finitely presented groups connected with their asymptotic representations. Namely, we say that a group is AGA if each of its almost-representations generates an asymptotic representation. We give examples of groups with and without this property. In particular, free groups, finite groups and free Abelian groups are AGA. In our example of a group $\Gamma$ that is not AGA, the group $K^0(\mathrm B\Gamma)$ contains elements that are not covered by asymptotic representations of $\Gamma$.
@article{IM2_1999_63_5_a5,
     author = {V. M. Manuilov},
     title = {Almost-representations and asymptotic representations of discrete groups},
     journal = {Izvestiya. Mathematics },
     pages = {995--1014},
     publisher = {mathdoc},
     volume = {63},
     number = {5},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_5_a5/}
}
TY  - JOUR
AU  - V. M. Manuilov
TI  - Almost-representations and asymptotic representations of discrete groups
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 995
EP  - 1014
VL  - 63
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_5_a5/
LA  - en
ID  - IM2_1999_63_5_a5
ER  - 
%0 Journal Article
%A V. M. Manuilov
%T Almost-representations and asymptotic representations of discrete groups
%J Izvestiya. Mathematics 
%D 1999
%P 995-1014
%V 63
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_5_a5/
%G en
%F IM2_1999_63_5_a5
V. M. Manuilov. Almost-representations and asymptotic representations of discrete groups. Izvestiya. Mathematics , Tome 63 (1999) no. 5, pp. 995-1014. http://geodesic.mathdoc.fr/item/IM2_1999_63_5_a5/