The problem of general Radon representation for an arbitrary Hausdorff space
Izvestiya. Mathematics , Tome 63 (1999) no. 5, pp. 881-921.

Voir la notice de l'article provenant de la source Math-Net.Ru

After the fundamental work of Riesz, Radon and Hausdorff in the period 1909–1914, the following problem of general Radon representation emerged: for any Hausdorff space find the space of linear functionals that are integrally representable by Radon measures. In the early 1950s, a partial solution of this problem (the bijective version) for locally compact spaces was obtained by Halmos, Hewitt, Edwards, Bourbaki and others. For bounded Radon measures on a Tychonoff space, the problem of isomorphic Radon representation was solved in 1956 by Prokhorov. In this paper we give a possible solution of the problem of general Radon representation. To do this, we use the family of metasemicontinuous functions with compact support and the class of thin functionals. We present bijective and isomorphic versions of the solution (Theorems 1 and 2 of § 2.5). To get the isomorphic version, we introduce the family of Radon bimeasures.
@article{IM2_1999_63_5_a1,
     author = {V. K. Zakharov and A. V. Mikhalev},
     title = {The problem of general {Radon} representation for an arbitrary {Hausdorff} space},
     journal = {Izvestiya. Mathematics },
     pages = {881--921},
     publisher = {mathdoc},
     volume = {63},
     number = {5},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_5_a1/}
}
TY  - JOUR
AU  - V. K. Zakharov
AU  - A. V. Mikhalev
TI  - The problem of general Radon representation for an arbitrary Hausdorff space
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 881
EP  - 921
VL  - 63
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_5_a1/
LA  - en
ID  - IM2_1999_63_5_a1
ER  - 
%0 Journal Article
%A V. K. Zakharov
%A A. V. Mikhalev
%T The problem of general Radon representation for an arbitrary Hausdorff space
%J Izvestiya. Mathematics 
%D 1999
%P 881-921
%V 63
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_5_a1/
%G en
%F IM2_1999_63_5_a1
V. K. Zakharov; A. V. Mikhalev. The problem of general Radon representation for an arbitrary Hausdorff space. Izvestiya. Mathematics , Tome 63 (1999) no. 5, pp. 881-921. http://geodesic.mathdoc.fr/item/IM2_1999_63_5_a1/

[1] Riesz F., “Sur les opérations fonctionelles linéaires”, C. R. Acad. Sci. Paris, 149 (1909), 974–977

[2] Radon J., “Theorie und Anwendangen der absolut additiven Mengenfunktionen”, S.–B. Akad. Wiss. Wien., 122 (1913), 1295–1438 | Zbl

[3] Hausdorff F., Grundzuge der Mengenlehre, Veit, Leipzig, 1914 | Zbl

[4] Saks S., Theory of the integral, Warszawa, 1937

[5] Saks S., “Integration in abstract metric spaces”, Duke Math. J., 4 (1938), 408–411 | DOI | MR | Zbl

[6] Kakutani S., “Concrete representation of abstract (M) – spaces”, Ann. Math. (2), 42 (1941), 994–1024 | DOI | MR | Zbl

[7] Halmos P. R., Measure Theory, New York, 1950 | MR

[8] Hewitt E., “Integration on locally compact spaces, I”, Univ. of Washington Publ. in Math., 3 (1952), 71–75 | MR

[9] Edwads R. E., “A theory of Radon measures on locally compact spaces”, Acta Math., 89 (1953), 133–164 | DOI | MR

[10] Bourbaki N., Intégration, Chap. I–VI, Hermann, Paris, 1952–1959 | MR

[11] Hewitt E., Stromberg K., Real and Abstract Analysis, Springer-Verlag, Berlin, 1965 | MR

[12] Fremlin D. H., Topological Riesz spaces and measure theory, The University Press, Cambridge, 1974 | MR

[13] Prokhorov Yu. V., “Skhodimost sluchainykh protsessov i predelnye teoremy teorii veroyatnostei”, Teoriya veroyatnostei i ee primeneniya, 1 (1956), 177–238 | MR

[14] Topsoe F., Topology and measure, Lect. Notes Math., 133, 1970 | MR | Zbl

[15] Pollard D., Topsoe F., “A unified approach to Riesz type representation theorems”, Studia Math., 54 (1975), 173–190 | MR | Zbl

[16] Topsoe F., “Further results on integral representations”, Studia Math., 55 (1976), 239–245 | MR | Zbl

[17] Topsoe F., “Radon measures, some basic constructions”, Lect. Notes Math., 1033 (1983), 303–311 | DOI | MR | Zbl

[18] Anger B., Portenier C., Radon integrals, Progress in Math., 103, Birkhäuser, Boston–Berlin, 1992 | MR | Zbl

[19] König H., “The Danielle–Stone–Riesz representation theorem”, Operator theory: advances and applications, 75 (1995), 191–222 | MR

[20] König H., Measure and integration, Springer-Verlag, Berlin, 1997 | MR

[21] Zakharov V. K., Mikhalëv A. V., “Problema Radona dlya regulyarnykh mer na proizvolnom khausdorfovom prostranstve”, Fundamentalnaya i prikladnaya matematika, 3:3 (1997), 801–808 | MR | Zbl

[22] Zakharov V. K., Mikhalëv A. V., “Integralnoe predstavlenie dlya radonovskikh mer na proizvolnom khausdorfovom prostranstve”, Fundamentalnaya i prikladnaya matematika, 3:4 (1997), 1135–1172 | MR | Zbl

[23] Zakharov V. K., Mikhalëv A. V., “Problema integralnogo predstavleniya dlya radonovskikh mer na proizvolnom khausdorfovom prostranstve”, Dokl. RAN, 360:1 (1998), 13–15 | MR | Zbl

[24] Semadeni Z., Banach spaces of continuous functions, Polish Sci. Publ., Warszawa, 1971 | MR | Zbl

[25] Dinculianu N., Vector Measures, Oxford Univ. Press (Pergamon), London–N.Y., 1967

[26] Aleksandrov A. D., “Additive functions in abstract spaces. I–III”, Matem. sb., 8(50):2 (1940), 307–348 ; 9(51):3 (1941), 563–628 ; 13(55):2–3 (1943), 169–238 | MR | Zbl | MR | Zbl | MR | Zbl

[27] Stone M. N., “Notes on integration. I–IV”, Proc. Nat. Acad. Sci. USA, 34 (1948), 336–342 ; 447–455 ; 483–490 ; 35 (1949), 50–58 | DOI | MR | Zbl | Zbl | DOI | MR | Zbl

[28] Schwartz L., Radon measures on arbitrary topological spaces and cylindrical measures, Oxford Univ. Press, London–N.Y., 1973 | MR | Zbl

[29] Jacobs K., Measure and integral, Academic Press, N.Y., 1978 | MR

[30] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl

[31] Zakharov V. K., “Funktsionalnoe predstavlenie ravnomernogo popolneniya maksimalnogo i schetno-plotnogo modulei chastnykh modulya nepreryvnykh funktsii”, UMN, 35:4 (1980), 187–188 | MR | Zbl

[32] Zaharov V., “Functional characterization of absolute and Dedekind completion”, Bull. Acad. Polon. Sci. Serie sci. math., 29:5–6 (1981), 293–297 | MR | Zbl

[33] Zakharov V. K., “Svyazi mezhdu rasshireniem Lebega i rasshireniem Borelya pervogo klassa i mezhdu sootvetstvuyuschimi im proobrazami”, Izv. AN SSSR. Ser. matem., 54:5 (1990), 928–956 | Zbl

[34] Hausdorff F., “Über halbstetige Functionen und deren Verallgemeinerung”, Math. Z., 4 (1915), 292–309 | MR

[35] Sierpin'ski W., “Sur les fonctions développables en séries absolument convergentes de fonctions continues”, Fund. Math., 2 (1921), 15–27 | Zbl

[36] Zaharov V. K., “Alexandrovian cover and Sierpin'skian extension”, Studia Sci. Math. Hung., 24 (1989), 93–117 | MR | Zbl

[37] Zakharov V. K., “Svyaz mezhdu polnym koltsom chastnykh koltsa nepreryvnykh funktsii, regulyarnym popolneniem i rasshireniyami Khausdorfa–Serpinskogo”, UMN, 45:6 (1990), 133–134 | MR | Zbl

[38] Zakharov V. K., “Rasshireniya koltsa nepreryvnykh funktsii, porozhdennye regulyarnym, schetno-delimym i polnym koltsami chastnykh, i sootvetstvuyuschie im proobrazy”, Izv. RAN. Ser. matem., 59:4 (1995), 15–60 | MR | Zbl