Topological completeness of spaces of measures
Izvestiya. Mathematics , Tome 63 (1999) no. 4, pp. 827-843
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that the functors $P_R$ and $P_\tau$ of Radon and $\tau$-additive probability measures, respectively, preserve neither the real-completeness nor the Dieudonne completeness of Tychonoff spaces. We suggest conditions under which Martin's axiom implies that $P_\tau$ preserves real-complete spaces, absolute extensors, and Tychonoff bundles. These last results cannot be obtained without additional set-theoretic assumptions.
@article{IM2_1999_63_4_a8,
author = {V. V. Fedorchuk},
title = {Topological completeness of spaces of measures},
journal = {Izvestiya. Mathematics },
pages = {827--843},
publisher = {mathdoc},
volume = {63},
number = {4},
year = {1999},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_4_a8/}
}
V. V. Fedorchuk. Topological completeness of spaces of measures. Izvestiya. Mathematics , Tome 63 (1999) no. 4, pp. 827-843. http://geodesic.mathdoc.fr/item/IM2_1999_63_4_a8/