Topological completeness of spaces of measures
Izvestiya. Mathematics , Tome 63 (1999) no. 4, pp. 827-843

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the functors $P_R$ and $P_\tau$ of Radon and $\tau$-additive probability measures, respectively, preserve neither the real-completeness nor the Dieudonne completeness of Tychonoff spaces. We suggest conditions under which Martin's axiom implies that $P_\tau$ preserves real-complete spaces, absolute extensors, and Tychonoff bundles. These last results cannot be obtained without additional set-theoretic assumptions.
@article{IM2_1999_63_4_a8,
     author = {V. V. Fedorchuk},
     title = {Topological completeness of spaces of measures},
     journal = {Izvestiya. Mathematics },
     pages = {827--843},
     publisher = {mathdoc},
     volume = {63},
     number = {4},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_4_a8/}
}
TY  - JOUR
AU  - V. V. Fedorchuk
TI  - Topological completeness of spaces of measures
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 827
EP  - 843
VL  - 63
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_4_a8/
LA  - en
ID  - IM2_1999_63_4_a8
ER  - 
%0 Journal Article
%A V. V. Fedorchuk
%T Topological completeness of spaces of measures
%J Izvestiya. Mathematics 
%D 1999
%P 827-843
%V 63
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_4_a8/
%G en
%F IM2_1999_63_4_a8
V. V. Fedorchuk. Topological completeness of spaces of measures. Izvestiya. Mathematics , Tome 63 (1999) no. 4, pp. 827-843. http://geodesic.mathdoc.fr/item/IM2_1999_63_4_a8/