Topological completeness of spaces of measures
Izvestiya. Mathematics , Tome 63 (1999) no. 4, pp. 827-843.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the functors $P_R$ and $P_\tau$ of Radon and $\tau$-additive probability measures, respectively, preserve neither the real-completeness nor the Dieudonne completeness of Tychonoff spaces. We suggest conditions under which Martin's axiom implies that $P_\tau$ preserves real-complete spaces, absolute extensors, and Tychonoff bundles. These last results cannot be obtained without additional set-theoretic assumptions.
@article{IM2_1999_63_4_a8,
     author = {V. V. Fedorchuk},
     title = {Topological completeness of spaces of measures},
     journal = {Izvestiya. Mathematics },
     pages = {827--843},
     publisher = {mathdoc},
     volume = {63},
     number = {4},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_4_a8/}
}
TY  - JOUR
AU  - V. V. Fedorchuk
TI  - Topological completeness of spaces of measures
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 827
EP  - 843
VL  - 63
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_4_a8/
LA  - en
ID  - IM2_1999_63_4_a8
ER  - 
%0 Journal Article
%A V. V. Fedorchuk
%T Topological completeness of spaces of measures
%J Izvestiya. Mathematics 
%D 1999
%P 827-843
%V 63
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_4_a8/
%G en
%F IM2_1999_63_4_a8
V. V. Fedorchuk. Topological completeness of spaces of measures. Izvestiya. Mathematics , Tome 63 (1999) no. 4, pp. 827-843. http://geodesic.mathdoc.fr/item/IM2_1999_63_4_a8/

[1] Banakh T. O., “Topologiya prostranstv veroyatnostnykh mer, I”, Matem. stud. Pratsi Lvivskogo matem. t-va, 1995, no. 5, 65–87 | MR | Zbl

[2] Banakh T. O., “Topologiya prostranstv veroyatnostnykh mer, II”, Matem. stud. Pratsi Lvivskogo matem. t-va, 1995, no. 5, 88–106 | MR | Zbl

[3] Banakh T. O., Radul T. N., “Topologiya prostranstv veroyatnostnykh mer”, Matem. sb., 188:7 (1977), 23–46 | MR

[4] Banakh T. O., Radul T. N., “Geometriya otobrazhenii prostranstv veroyatnostnykh mer”, Matem. stud. Pratsi Lvivskogo matem. t-va, 11:1 (1999), 17–30 | MR | Zbl

[5] Varadarain V. S., “Mery na topologicheskikh prostranstvakh”, Matem. sb., 55:1 (1961), 35–100 | MR

[6] Le-Kam L., “Skhodimost po raspredeleniyu sluchainykh protsessov”, Matematika, 4:3 (1960), 107–142; “Convergence in distribution of stochastic processes”, Univ. Calif. Publs Statist., 2:11 (1957), 207–236 | MR

[7] Prokhorov Yu. V., “Skhodimost sluchainykh protsessov i predelnye teoremy teorii veroyatnostei”, Teoriya veroyatn. i ee primen., 138:1 (1956), 177–238 | MR

[8] Fedorchuk V. V., “Veroyatnostnye mery v topologii”, UMN, 46:1 (1991), 41–80 | MR | Zbl

[9] Fedorchuk V. V., “O svoistvakh tipa polnoty prostranstv $\tau $-additivnykh veroyatnostnykh mer”, Vestn. MGU. Ser. mat.-mekh., 1998, no. 1, 19–22 | MR | Zbl

[10] Fedorchuk V. V., Filippov V. V., Obschaya topologiya. Osnovnye konstruktsii, Izd-vo MGU, M., 1988 | Zbl

[11] Fedorchuk V. V., Chigogidze A. Ch., Absolyutnye retrakty i beskonechnomernye mnogoobraziya, Nauka, M., 1992 | MR | Zbl

[12] Schepin E. V., “Funktory i neschetnye stepeni kompaktov”, UMN, 36:3 (1981), 3–62 | MR | Zbl

[13] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR

[14] Ditor S., Haydon R., “On absolute retracts, $P(S)$ and complemented subspaces of $C(D^{\omega _1})$”, Studia Math., 56:3 (1976), 243–251 | MR | Zbl

[15] Dobrowolski T., Sakai K., “Spaces of measures of metrizable spaces”, Topology and Applic., 72:3 (1996), 215–258 | DOI | MR | Zbl

[16] Fedorchuk V. V., “On a preservation of completeness of uniform spaces by the functor $P_{\tau }$”, Topology and Applic., 91 (1999), 25–45 | DOI | MR | Zbl

[17] Fedorchuk V. V., Todorcévic S., “Cellularity of covariant functors”, Topology and Applic., 76 (1997), 125–150 | DOI | MR | Zbl

[18] Gardner R. J., Pfeffer W. F., “Borel measures”, Handbook of set-theoretic topology, Elsevier Science Publishers B. V., Amsterdam, 1984 | MR

[19] Shirota T., “A class of topological spaces”, Osaca Math. J., 4 (1952), 23–40 | MR | Zbl

[20] Solovay R., Tennenbaum S., “Iterated Cohen extensions and Suslin's Problem”, Annals of Math., 94 (1971), 201–245 | DOI | MR | Zbl