Thurston geometries on bases of bundles of homogeneous spaces
Izvestiya. Mathematics , Tome 63 (1999) no. 4, pp. 667-686

Voir la notice de l'article provenant de la source Math-Net.Ru

Natural Seifert bundles for plesiocompact (in particular, compact) homogeneous spaces $M$ are considered. Conditions are given for the realizability of compact forms of Thurston geometries of dimension less than or equal to four on the bases $M_a^*$ of these bundles. The structure of these $M_a^*$ is discussed in detail.
@article{IM2_1999_63_4_a2,
     author = {V. V. Gorbatsevich},
     title = {Thurston geometries on bases of bundles of homogeneous spaces},
     journal = {Izvestiya. Mathematics },
     pages = {667--686},
     publisher = {mathdoc},
     volume = {63},
     number = {4},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_4_a2/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - Thurston geometries on bases of bundles of homogeneous spaces
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 667
EP  - 686
VL  - 63
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_4_a2/
LA  - en
ID  - IM2_1999_63_4_a2
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T Thurston geometries on bases of bundles of homogeneous spaces
%J Izvestiya. Mathematics 
%D 1999
%P 667-686
%V 63
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_4_a2/
%G en
%F IM2_1999_63_4_a2
V. V. Gorbatsevich. Thurston geometries on bases of bundles of homogeneous spaces. Izvestiya. Mathematics , Tome 63 (1999) no. 4, pp. 667-686. http://geodesic.mathdoc.fr/item/IM2_1999_63_4_a2/