Embedding lattices in lattices of varieties of groups
Izvestiya. Mathematics , Tome 63 (1999) no. 4, pp. 649-665.

Voir la notice de l'article provenant de la source Math-Net.Ru

If $\mathfrak V$ is a variety of groups and $\mathfrak U$ is a subvariety, then the symbol $\langle\mathfrak U,\mathfrak V\rangle$ denotes the complete lattice of varieties $\mathfrak X$ such that $\mathfrak U\subseteq \mathfrak X\subseteq \mathfrak V$. Let $\Lambda=\mathrm C\prod_{n=1}^\infty\Lambda_n$, where $\Lambda_n$ is the lattice of subspaces of the $n$-dimensional vector space over the field of two elements, and let $\mathrm C\prod$ be the Cartesian product operation. A non-empty subset $K$ of a complete lattice $M$ is called a complete sublattice of $M$ if $\sup_MX\in K$ and $\inf_MX\in K$ for any non-empty $X\subseteq K$. We prove that $\Lambda$ is isomorphic to a complete sublattice of $\langle\mathfrak A_2^4, \mathfrak A_2^5\rangle$. On the other hand, it is obvious that $\langle\mathfrak U,\mathfrak A_2\mathfrak U\rangle$ is isomorphic to a complete sublattice of $\Lambda$ for any locally finite variety $\mathfrak U$. We deduce criteria for the existence of an isomorphism onto a (complete) sublattice of $\langle\mathfrak U,\mathfrak A_2\mathfrak U\rangle$ for some locally finite variety $\mathfrak U$. We also prove that there is a sublattice $\langle\mathfrak A_2^4,\mathfrak A_2^5\rangle$ generated by four elements and containing an infinite chain.
@article{IM2_1999_63_4_a1,
     author = {M. I. Anokhin},
     title = {Embedding lattices in lattices of varieties of groups},
     journal = {Izvestiya. Mathematics },
     pages = {649--665},
     publisher = {mathdoc},
     volume = {63},
     number = {4},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_4_a1/}
}
TY  - JOUR
AU  - M. I. Anokhin
TI  - Embedding lattices in lattices of varieties of groups
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 649
EP  - 665
VL  - 63
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_4_a1/
LA  - en
ID  - IM2_1999_63_4_a1
ER  - 
%0 Journal Article
%A M. I. Anokhin
%T Embedding lattices in lattices of varieties of groups
%J Izvestiya. Mathematics 
%D 1999
%P 649-665
%V 63
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_4_a1/
%G en
%F IM2_1999_63_4_a1
M. I. Anokhin. Embedding lattices in lattices of varieties of groups. Izvestiya. Mathematics , Tome 63 (1999) no. 4, pp. 649-665. http://geodesic.mathdoc.fr/item/IM2_1999_63_4_a1/

[1] Mazurov V. D., Khukhro E. I., Nereshennye voprosy teorii grupp. Kourovskaya tetrad, Izd. 13-e, dop., Izd-vo NII matematiko-informatsionnykh osnov obucheniya NGU, Novosibirsk, 1995

[2] Kleiman Yu. G., “O nekotorykh voprosakh teorii mnogoobrazii grupp”, Izv. AN SSSR. Ser. matem., 47:1 (1983), 37–74 | MR | Zbl

[3] Storozhev A., “On abelian subgroups of relatively free groups”, Commun. Algebra, 22:7 (1994), 2677–2701 | DOI | MR | Zbl

[4] Birkgof G., Teoriya reshetok, Nauka, M., 1984 | MR

[5] Vaughan-Lee M. R., “Uncountably many varieties of groups”, Bull. London Math. Soc., 2:6 (1970), 280–286, Pt. 3 | DOI | MR | Zbl

[6] Kleiman Yu. G., “O tozhdestvakh v gruppakh”, Tr. Mosk. matem. ob-va, 44 (1982), 62–108 | MR | Zbl

[7] Neiman Kh., Mnogoobraziya grupp, Mir, M., 1969 | MR

[8] Kholl M., Teoriya grupp, IL, M., 1962

[9] Aivazyan S. V., “O nekotorykh beskonechnykh tsepyakh mnogoobrazii grupp”, Dokl. AN Arm. SSR, LXXVI:5 (1983), 198–200 | MR

[10] Schützenberger M.-P., “Sur certains axiomes de la théorie des structures”, C. R. Acad. Sci. Paris, 221:8 (1945), 218–220 | MR | Zbl