On the best $L_1$-approximation by algebraic polynomials to truncated powers and to classes of functions with $L_1$-bounded derivative
Izvestiya. Mathematics , Tome 63 (1999) no. 3, pp. 561-582
Voir la notice de l'article provenant de la source Math-Net.Ru
We establish the asymptotic behaviour of the best $L_1$-approximations of the kernels
$(x-a)_+^{r-1}$, $r>2$ and the corresponding classes $W_1^r$ by algebraic polynomials.
@article{IM2_1999_63_3_a5,
author = {V. P. Motornyi and O. V. Motornaya},
title = {On the best $L_1$-approximation by algebraic polynomials to truncated powers and to classes of functions with $L_1$-bounded derivative},
journal = {Izvestiya. Mathematics },
pages = {561--582},
publisher = {mathdoc},
volume = {63},
number = {3},
year = {1999},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_3_a5/}
}
TY - JOUR AU - V. P. Motornyi AU - O. V. Motornaya TI - On the best $L_1$-approximation by algebraic polynomials to truncated powers and to classes of functions with $L_1$-bounded derivative JO - Izvestiya. Mathematics PY - 1999 SP - 561 EP - 582 VL - 63 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1999_63_3_a5/ LA - en ID - IM2_1999_63_3_a5 ER -
%0 Journal Article %A V. P. Motornyi %A O. V. Motornaya %T On the best $L_1$-approximation by algebraic polynomials to truncated powers and to classes of functions with $L_1$-bounded derivative %J Izvestiya. Mathematics %D 1999 %P 561-582 %V 63 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1999_63_3_a5/ %G en %F IM2_1999_63_3_a5
V. P. Motornyi; O. V. Motornaya. On the best $L_1$-approximation by algebraic polynomials to truncated powers and to classes of functions with $L_1$-bounded derivative. Izvestiya. Mathematics , Tome 63 (1999) no. 3, pp. 561-582. http://geodesic.mathdoc.fr/item/IM2_1999_63_3_a5/