On the best $L_1$-approximation by algebraic polynomials to truncated powers and to classes of functions with $L_1$-bounded derivative
Izvestiya. Mathematics , Tome 63 (1999) no. 3, pp. 561-582.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish the asymptotic behaviour of the best $L_1$-approximations of the kernels $(x-a)_+^{r-1}$, $r>2$ and the corresponding classes $W_1^r$ by algebraic polynomials.
@article{IM2_1999_63_3_a5,
     author = {V. P. Motornyi and O. V. Motornaya},
     title = {On the best $L_1$-approximation by algebraic polynomials to truncated powers and to classes of functions with $L_1$-bounded derivative},
     journal = {Izvestiya. Mathematics },
     pages = {561--582},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_3_a5/}
}
TY  - JOUR
AU  - V. P. Motornyi
AU  - O. V. Motornaya
TI  - On the best $L_1$-approximation by algebraic polynomials to truncated powers and to classes of functions with $L_1$-bounded derivative
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 561
EP  - 582
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_3_a5/
LA  - en
ID  - IM2_1999_63_3_a5
ER  - 
%0 Journal Article
%A V. P. Motornyi
%A O. V. Motornaya
%T On the best $L_1$-approximation by algebraic polynomials to truncated powers and to classes of functions with $L_1$-bounded derivative
%J Izvestiya. Mathematics 
%D 1999
%P 561-582
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_3_a5/
%G en
%F IM2_1999_63_3_a5
V. P. Motornyi; O. V. Motornaya. On the best $L_1$-approximation by algebraic polynomials to truncated powers and to classes of functions with $L_1$-bounded derivative. Izvestiya. Mathematics , Tome 63 (1999) no. 3, pp. 561-582. http://geodesic.mathdoc.fr/item/IM2_1999_63_3_a5/

[1] Korneichuk N. P., Tochnye konstanty v teorii priblizhenii, Nauka, M., 1987 | MR

[2] Nikolskii S. M., “O nailuchshem lineinom metode priblizheniya mnogochlenami v srednem differentsiruemykh funktsii”, DAN SSSR, 58:2 (1947), 185–188 | MR | Zbl

[3] Motornyi V. P., Nitiema P. C., “On the best $L$-approximation by polinomials of the functions which are fractional integrals of summable functions”, East J. Appr., 2:4 (1996), 409–425 | MR | Zbl

[4] Nitiema P. K., “O nailuchshem $L_1$-priblizhenii algebraicheskimi mnogochlenami usechennykh stepenei”, UMZh, 50:4 (1998), 593–598 | MR | Zbl

[5] Nikolskii S. M., “O nailuchshem priblizhenii mnogochlenami v srednem funktsii $|a-x|^s$”, Izv. AN SSSR. Ser. matem., 11:2 (1947), 139–180 | MR | Zbl

[6] Motornaya O. V., O nailuchshem priblizhenii differentsiruemykh funktsii algebraicheskimi mnogochlenami v prostranstve $L_1$, Preprint No 93-20, In-t matem. AN Ukrainy, Kiev, 1993 | Zbl

[7] Motornaya O. V., “Ob asimptoticheskikh otsenkakh nailuchshikh priblizhenii differentsiruemykh funktsii algebraicheskimi mnogochlenami v prostranstve $L_1$”, UMZh, 45:6 (1993), 859–862 | MR | Zbl

[8] Kofanov V. A., “Priblizhenie klassov differentsiruemykh funktsii algebraicheskimi mnogochlenami v srednem”, Izv. AN SSSR. Ser. matem., 47:5 (1983), 1078–1090 | MR | Zbl

[9] Motornyi V. P., Motornaya O. V., “Nailuchshee priblizhenie klassov differentsiruemykh funktsii algebraicheskimi mnogochlenami v srednem”, Tr. MIRAN, 210 (1995), 171–188 | MR | Zbl

[10] Motornyi V. P., Motornaya O. V., “On the best approximation of the classes $W^rH^\alpha$ by algebraic polynomials in $L_1$”, East J. Approx., 3:1 (1995), 309–339 | MR | Zbl

[11] Motornyi V. P., Motornaya O. V., “Ob asimptoticheskom povedenii nailuchshikh priblizhenii klassov differentsiruemykh funktsii algebraicheskimi mnogochlenami v srednem”, Dokl. RAN, 345:3 (1995), 306–307 | MR | Zbl

[12] Stechkin S. B., “O nailuchshem priblizhenii nekotorykh klassov periodicheskikh funktsii trigonometricheskimi mnogochlenami”, Izv. AN SSSR. Ser. matem., 20:5 (1956), 643–648 | MR | Zbl

[13] Sun Yun-shen, “O nailuchshem priblizhenii periodicheskikh differentsiruemykh funktsii trigonometricheskimi mnogochlenami”, Izv. AN SSSR. Ser. matem., 23:1 (1959), 67–92 | MR | Zbl

[14] Dzyadyk V. K., “O nailuchshem priblizhenii na klassakh periodicheskikh funktsii, opredelyaemykh yadrami, yavlyayuschimisya integralami ot absolyutno monotonnykh funktsii”, Izv. AN SSSR. Ser. matem., 23:6 (1959), 933–950 | MR | Zbl

[15] Dzyadyk V. K., “O nailuchshem priblizhenii na klassakh periodicheskikh funktsii, opredelyaemykh integralami ot lineinoi kombinatsii absolyutno monotonnykh yader”, Matem. zametki, 16:5 (1974), 691–701 | MR | Zbl

[16] Taikov L. V., “O priblizhenii v srednem nekotorykh klassov periodicheskikh funktsii”, Tr. Matem. in-ta AN SSSR im. V. A. Steklova, 88 (1967), 61–70 | MR | Zbl

[17] Motornaya O. V., “O nailuchshem priblizhenii klassov differentsiruemykh funktsii algebraicheskimi mnogochlenami v $L_1$”, Priblizhenie funktsii i summirovanie ryadov, Izd-vo DGU, Dnepropetrovsk, 1991, 40–51

[18] Sinvel H., “Uniform Approximation of Differentiable Function by Algebraic polynomials”, J. Approxim. Theory, 32 (1981), 1–8 | DOI | MR

[19] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960

[20] Motornaya O. V., Motornyi V. P., Nitiema P. K., “O nailuchshem $L_1$-priblizhenii mnogochlenami funktsii, yavlyayuschikhsya drobnymi integralami ot summiruemykh funktsii”, Dokl. NAN Ukrainy, 1998, no. 2, 48–51 | MR | Zbl