On the best $L_1$-approximation by algebraic polynomials to truncated powers and to classes of functions with $L_1$-bounded derivative
Izvestiya. Mathematics , Tome 63 (1999) no. 3, pp. 561-582

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish the asymptotic behaviour of the best $L_1$-approximations of the kernels $(x-a)_+^{r-1}$, $r>2$ and the corresponding classes $W_1^r$ by algebraic polynomials.
@article{IM2_1999_63_3_a5,
     author = {V. P. Motornyi and O. V. Motornaya},
     title = {On the best $L_1$-approximation by algebraic polynomials to truncated powers and to classes of functions with $L_1$-bounded derivative},
     journal = {Izvestiya. Mathematics },
     pages = {561--582},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_3_a5/}
}
TY  - JOUR
AU  - V. P. Motornyi
AU  - O. V. Motornaya
TI  - On the best $L_1$-approximation by algebraic polynomials to truncated powers and to classes of functions with $L_1$-bounded derivative
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 561
EP  - 582
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_3_a5/
LA  - en
ID  - IM2_1999_63_3_a5
ER  - 
%0 Journal Article
%A V. P. Motornyi
%A O. V. Motornaya
%T On the best $L_1$-approximation by algebraic polynomials to truncated powers and to classes of functions with $L_1$-bounded derivative
%J Izvestiya. Mathematics 
%D 1999
%P 561-582
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_3_a5/
%G en
%F IM2_1999_63_3_a5
V. P. Motornyi; O. V. Motornaya. On the best $L_1$-approximation by algebraic polynomials to truncated powers and to classes of functions with $L_1$-bounded derivative. Izvestiya. Mathematics , Tome 63 (1999) no. 3, pp. 561-582. http://geodesic.mathdoc.fr/item/IM2_1999_63_3_a5/