Approximations with a~sign-sensitive weight. Stability, applications to the theory of snakes and Hausdorff approximations
Izvestiya. Mathematics , Tome 63 (1999) no. 3, pp. 495-534.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sign-sensitive approximations take into account not only the absolute value of the approximation error but also its sign. In the previous paper with the same title and the subtitle “existence and uniqueness theorems” we studied the problems of existence, uniqueness and plurality for the element of best uniform approximation with a sign-sensitive weight $p=(p_-,p_+)$ ($p_\pm(x)\geqslant 0$, $x\in E$) by some (in particular, Chebyshev) family $L$ of bounded functions on a set $E\subset\mathbb R$. An important role was played by the notions of rigidity and freedom of the system $(p,L)$. Here we consider the stability of this process of approximation, that is, whether the least deviations $E(p,L,f)$ and the best approximations $l(p,L,f)$ by elements $l\in L$ depend continuously on $p$ if the variation of $p$ is measured in the so-called $d$-metric. The results are applied to the theory of snakes and Hausdorff approximations of special multivalued functions.
@article{IM2_1999_63_3_a2,
     author = {E. P. Dolzhenko and E. A. Sevast'yanov},
     title = {Approximations with a~sign-sensitive weight. {Stability,} applications to the theory of snakes and {Hausdorff} approximations},
     journal = {Izvestiya. Mathematics },
     pages = {495--534},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_3_a2/}
}
TY  - JOUR
AU  - E. P. Dolzhenko
AU  - E. A. Sevast'yanov
TI  - Approximations with a~sign-sensitive weight. Stability, applications to the theory of snakes and Hausdorff approximations
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 495
EP  - 534
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_3_a2/
LA  - en
ID  - IM2_1999_63_3_a2
ER  - 
%0 Journal Article
%A E. P. Dolzhenko
%A E. A. Sevast'yanov
%T Approximations with a~sign-sensitive weight. Stability, applications to the theory of snakes and Hausdorff approximations
%J Izvestiya. Mathematics 
%D 1999
%P 495-534
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_3_a2/
%G en
%F IM2_1999_63_3_a2
E. P. Dolzhenko; E. A. Sevast'yanov. Approximations with a~sign-sensitive weight. Stability, applications to the theory of snakes and Hausdorff approximations. Izvestiya. Mathematics , Tome 63 (1999) no. 3, pp. 495-534. http://geodesic.mathdoc.fr/item/IM2_1999_63_3_a2/

[1] Dolzhenko E. P., Sevastyanov E. A., “Approksimatsii so znakochuvstvitelnym vesom (teoremy suschestvovaniya i edinstvennosti)”, Izv. RAN. Ser. matem., 62:6 (1998), 59–102 | MR | Zbl

[2] Dolzhenko E. P., Sevastyanov E. A., “Znakochuvstvitelnye approksimatsii (prostranstvo znakochuvstvitelnykh vesov, zhestkost i svoboda sistemy)”, Dokl. RAN, 332:6 (1993), 686–689 | MR | Zbl

[3] Dolzhenko E. P., Sevastyanov E. A., “Znakochuvstvitelnye approksimatsii (voprosy edinstvennosti i ustoichivosti)”, Dokl. RAN, 333:1 (1993), 5–7 | MR | Zbl

[4] Dolzhenko E. P., Sevastyanov E. A., “Metricheskie prostranstva polunepreryvnykh funktsii”, Matem. zametki, 55:3 (1994), 48–58 | MR | Zbl

[5] Karlin S., “Representation theorems for positive functions”, J. of Math. and Mech., 12:4 (1963), 599–618 | MR

[6] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR | Zbl

[7] Krein M. G., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973 | MR

[8] Karlin S., Stadden V., Chebyshevskie sistemy i ikh primenenie v analize i statistike, Nauka, M., 1976 | MR

[9] Dolzhenko E. P., Sevastyanov E. A., “Ob opredelenii chebyshevskikh uzhei”, Vestnik Moskovskogo un-ta. Matem. Mekh., 1994, no. 3, 49–59 | MR | Zbl

[10] Akhiezer N. I., Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR | Zbl

[11] Sendov B., Khausdorfovy priblizheniya, Izd-vo BAN, Sofiya, 1979 | MR | Zbl

[12] Petukhov A. P., “Ob uzhakh i priblizhenii razryvnykh funktsii v metrike Khausdorfa”, Analysis Mathematica, 11:1 (1975), 55–73 | DOI | MR