Injectivity sets for the Radon transform over a~sphere
Izvestiya. Mathematics , Tome 63 (1999) no. 3, pp. 481-493.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper contains a solution of the problem of describing the kernel of the Radon transform over a sphere with respect to sets with spherical symmetry. This solution enabled us, in particular, to characterize all injectivity sets of this type. The technique used in the proofs enabled us to obtain other exact results concerning spherical means, namely, new two-radii theorems and a uniqueness theorem.
@article{IM2_1999_63_3_a1,
     author = {V. V. Volchkov},
     title = {Injectivity sets for the {Radon} transform over a~sphere},
     journal = {Izvestiya. Mathematics },
     pages = {481--493},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_3_a1/}
}
TY  - JOUR
AU  - V. V. Volchkov
TI  - Injectivity sets for the Radon transform over a~sphere
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 481
EP  - 493
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_3_a1/
LA  - en
ID  - IM2_1999_63_3_a1
ER  - 
%0 Journal Article
%A V. V. Volchkov
%T Injectivity sets for the Radon transform over a~sphere
%J Izvestiya. Mathematics 
%D 1999
%P 481-493
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_3_a1/
%G en
%F IM2_1999_63_3_a1
V. V. Volchkov. Injectivity sets for the Radon transform over a~sphere. Izvestiya. Mathematics , Tome 63 (1999) no. 3, pp. 481-493. http://geodesic.mathdoc.fr/item/IM2_1999_63_3_a1/

[1] Ion F., Ploskie volny i sfericheskie srednie v primenenii k differentsialnym uravneniyam s chastnymi proizvodnymi, IL, M., 1958

[2] Volchkov V. V., “Teoremy o srednem dlya odnogo klassa polinomov”, Sib. matem. zh., 35:4 (1994), 737–745 | MR | Zbl

[3] Agranovsky M. L., Quinto E. T., “Injectivity sets for the Radon transform over circles and complete systems of radial functions”, J. of Functional Anal., 139:2 (1996), 383–414 | DOI | MR | Zbl

[4] Agranovsky M. L., Berenstein C. A., Kuchment P. A., “Approximation by spherical waves in $L^p$-spaces”, J. of Geometric Analysis, 6:3 (1996), 365–383 | MR | Zbl

[5] Volchkov V. V., “Okonchatelnyi variant lokalnoi teoremy o dvukh radiusakh”, Matem. sb., 186:6 (1995), 15–34 | MR | Zbl

[6] Volchkov V. V., “Novye teoremy o srednem dlya reshenii uravneniya Gelmgoltsa”, Matem. sb., 184:7 (1993), 71–78 | MR | Zbl

[7] Volchkov V. V., “Teoremy edinstvennosti dlya nekotorykh klassov funktsii s nulevymi sfericheskimi srednimi”, Matem. zametki, 62:1 (1997), 59–65 | MR | Zbl

[8] Volchkov V. V., “Novye teoremy o dvukh radiusakh v teorii garmonicheskikh funktsii”, Izv. RAN. Ser. matem., 58:1 (1994), 182–194 | MR | Zbl

[9] Volchkov V. V., “Ob odnoi probleme Zaltsmana i ee obobscheniyakh”, Matem. zametki, 53:2 (1993), 30–36 | MR | Zbl

[10] Volchkov V. V., “Novye teoremy o srednem dlya polianaliticheskikh funktsii”, Matem. zametki, 56:3 (1994), 20–28 | MR | Zbl

[11] Volchkov V. V., “Teoremy o dvukh radiusakh na prostranstvakh postoyannoi krivizny”, Dokl. RAN, 347:3 (1996), 300–302 | MR | Zbl

[12] Volchkov V. V., “Morera type theorems on the unit disk”, Ann. Math., 20 (1994), 49–63 | DOI | MR | Zbl

[13] Volchkov V. V., “Okonchatelnyi variant teoremy o srednem v teorii garmonicheskikh funktsii”, Matem. zametki, 59:3 (1996), 351–358 | MR | Zbl

[14] Volchkov V. V., “Teoremy o dvukh radiusakh na ogranichennykh oblastyakh evklidovykh prostranstv”, Diff. uravn., 30:10 (1994), 1719–1724 | MR | Zbl

[15] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Izd. 4-e, Nauka, M., 1981 | MR

[16] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl

[17] Zalcman L., “Analyticity and the Pompeiu problem”, Arch. Rat. Mech. Anal., 47 (1972), 237–254 | DOI | MR | Zbl

[18] Zalcman L., “Mean values and differential equations”, Israel J. Math., 14 (1973), 339–352 | DOI | MR | Zbl

[19] Berenstein C. A., Gay R., “A local version of the two-circles theorem”, Israel J. Math., 55 (1986), 267–288 | DOI | MR | Zbl

[20] Harchaoui M., “Inversion de la transformation de Pompeiu locale dans les espaces hyperboliques reel et complete (Cas de deux boules)”, J. Analyse Math., 67 (1995), 1–37 | DOI | MR | Zbl

[21] Cohen J. M., Picardello M. A., “The $2$-circle and $2$-disk problems on trees”, Israel J. Math., 64 (1988), 73–86 | DOI | MR | Zbl

[22] Khelgason S., Gruppy i geometricheskii analiz, Mir, M., 1987 | MR

[23] Quinto E. T., “Radon transforms on curves in the plane”, Lecture Notes in Applied Math., 30 (1994), 231–244 | MR | Zbl

[24] Vilenkin N. Ya., Spetsialnye funktsii teorii predstavlenii grupp, 2-e izd., Nauka, M., 1991 | MR | Zbl

[25] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR