Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1999_63_3_a1, author = {V. V. Volchkov}, title = {Injectivity sets for the {Radon} transform over a~sphere}, journal = {Izvestiya. Mathematics }, pages = {481--493}, publisher = {mathdoc}, volume = {63}, number = {3}, year = {1999}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_3_a1/} }
V. V. Volchkov. Injectivity sets for the Radon transform over a~sphere. Izvestiya. Mathematics , Tome 63 (1999) no. 3, pp. 481-493. http://geodesic.mathdoc.fr/item/IM2_1999_63_3_a1/
[1] Ion F., Ploskie volny i sfericheskie srednie v primenenii k differentsialnym uravneniyam s chastnymi proizvodnymi, IL, M., 1958
[2] Volchkov V. V., “Teoremy o srednem dlya odnogo klassa polinomov”, Sib. matem. zh., 35:4 (1994), 737–745 | MR | Zbl
[3] Agranovsky M. L., Quinto E. T., “Injectivity sets for the Radon transform over circles and complete systems of radial functions”, J. of Functional Anal., 139:2 (1996), 383–414 | DOI | MR | Zbl
[4] Agranovsky M. L., Berenstein C. A., Kuchment P. A., “Approximation by spherical waves in $L^p$-spaces”, J. of Geometric Analysis, 6:3 (1996), 365–383 | MR | Zbl
[5] Volchkov V. V., “Okonchatelnyi variant lokalnoi teoremy o dvukh radiusakh”, Matem. sb., 186:6 (1995), 15–34 | MR | Zbl
[6] Volchkov V. V., “Novye teoremy o srednem dlya reshenii uravneniya Gelmgoltsa”, Matem. sb., 184:7 (1993), 71–78 | MR | Zbl
[7] Volchkov V. V., “Teoremy edinstvennosti dlya nekotorykh klassov funktsii s nulevymi sfericheskimi srednimi”, Matem. zametki, 62:1 (1997), 59–65 | MR | Zbl
[8] Volchkov V. V., “Novye teoremy o dvukh radiusakh v teorii garmonicheskikh funktsii”, Izv. RAN. Ser. matem., 58:1 (1994), 182–194 | MR | Zbl
[9] Volchkov V. V., “Ob odnoi probleme Zaltsmana i ee obobscheniyakh”, Matem. zametki, 53:2 (1993), 30–36 | MR | Zbl
[10] Volchkov V. V., “Novye teoremy o srednem dlya polianaliticheskikh funktsii”, Matem. zametki, 56:3 (1994), 20–28 | MR | Zbl
[11] Volchkov V. V., “Teoremy o dvukh radiusakh na prostranstvakh postoyannoi krivizny”, Dokl. RAN, 347:3 (1996), 300–302 | MR | Zbl
[12] Volchkov V. V., “Morera type theorems on the unit disk”, Ann. Math., 20 (1994), 49–63 | DOI | MR | Zbl
[13] Volchkov V. V., “Okonchatelnyi variant teoremy o srednem v teorii garmonicheskikh funktsii”, Matem. zametki, 59:3 (1996), 351–358 | MR | Zbl
[14] Volchkov V. V., “Teoremy o dvukh radiusakh na ogranichennykh oblastyakh evklidovykh prostranstv”, Diff. uravn., 30:10 (1994), 1719–1724 | MR | Zbl
[15] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Izd. 4-e, Nauka, M., 1981 | MR
[16] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl
[17] Zalcman L., “Analyticity and the Pompeiu problem”, Arch. Rat. Mech. Anal., 47 (1972), 237–254 | DOI | MR | Zbl
[18] Zalcman L., “Mean values and differential equations”, Israel J. Math., 14 (1973), 339–352 | DOI | MR | Zbl
[19] Berenstein C. A., Gay R., “A local version of the two-circles theorem”, Israel J. Math., 55 (1986), 267–288 | DOI | MR | Zbl
[20] Harchaoui M., “Inversion de la transformation de Pompeiu locale dans les espaces hyperboliques reel et complete (Cas de deux boules)”, J. Analyse Math., 67 (1995), 1–37 | DOI | MR | Zbl
[21] Cohen J. M., Picardello M. A., “The $2$-circle and $2$-disk problems on trees”, Israel J. Math., 64 (1988), 73–86 | DOI | MR | Zbl
[22] Khelgason S., Gruppy i geometricheskii analiz, Mir, M., 1987 | MR
[23] Quinto E. T., “Radon transforms on curves in the plane”, Lecture Notes in Applied Math., 30 (1994), 231–244 | MR | Zbl
[24] Vilenkin N. Ya., Spetsialnye funktsii teorii predstavlenii grupp, 2-e izd., Nauka, M., 1991 | MR | Zbl
[25] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR