On the Phragmen--Lindelof principle for subharmonic functions
Izvestiya. Mathematics , Tome 63 (1999) no. 2, pp. 401-422.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider subharmonic functions $f(z)$ in a domain $D\subset\mathbb C$ such that $f(z)$ does not exceed some constant $C$ at all points of $\partial D\setminus\zeta$, $\zeta\in\partial D$. Theorems of Phragmen–Lindelof type provide an upper bound (depending on the structure of the domain $D$) for the a priori possible growth of $f(z)$ as $z\to\zeta$ such that functions satisfying this estimate do not exceed $C$ in the whole domain $D$. We obtain a Phragmen–Lindelof type theorem in which the restriction on the possible growth of $f(z)$ as $z\to\zeta$ is expressed in terms of the lower density (with respect to plane Lebesgue measure) of the set $\mathbb C\setminus D$ at the point $\zeta$.
@article{IM2_1999_63_2_a5,
     author = {D. S. Telyakovskii},
     title = {On the {Phragmen--Lindelof} principle for subharmonic functions},
     journal = {Izvestiya. Mathematics },
     pages = {401--422},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_2_a5/}
}
TY  - JOUR
AU  - D. S. Telyakovskii
TI  - On the Phragmen--Lindelof principle for subharmonic functions
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 401
EP  - 422
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_2_a5/
LA  - en
ID  - IM2_1999_63_2_a5
ER  - 
%0 Journal Article
%A D. S. Telyakovskii
%T On the Phragmen--Lindelof principle for subharmonic functions
%J Izvestiya. Mathematics 
%D 1999
%P 401-422
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_2_a5/
%G en
%F IM2_1999_63_2_a5
D. S. Telyakovskii. On the Phragmen--Lindelof principle for subharmonic functions. Izvestiya. Mathematics , Tome 63 (1999) no. 2, pp. 401-422. http://geodesic.mathdoc.fr/item/IM2_1999_63_2_a5/

[1] Privalov I. I., Subgarmonicheskie funktsii, ONTI, M.–L., 1937

[2] Telyakovskii D. S., “Ob odnoi teoreme tipa Fragmena–Lindelefa dlya subgarmonicheskikh funktsii”, Mezhdunarodnaya konferentsiya “Funktsionalnye prostranstva, teoriya priblizhenii, nelineinyi analiz”, Tez. dokl., MIAN, M., 1995, 267

[3] Landis E. M., “O printsipe Fragmena–Lindelefa dlya reshenii ellipticheskikh uravnenii”, DAN SSSR, 107:4 (1956), 508–511 | MR | Zbl