On non-negative solutions of quasilinear elliptic inequalities
Izvestiya. Mathematics , Tome 63 (1999) no. 2, pp. 255-329
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the solutions of the inequalities
$$
Lu\geqslant F(x,u), \qquad \mathcal Lu\geqslant F(x,u),
$$
where
$$
L=\sum_{i,j=1}^n\frac\partial{\partial x_i}\biggl(a_{ij}(x)\frac\partial{\partial x_j}\biggr), \qquad \mathcal L=\sum_{i,j=1}^n a_{ij}(x)\frac{\partial^2}{\partial x_i\,\partial x_j}\,,
$$
are differential operators of elliptic type and $F$ is some function.
@article{IM2_1999_63_2_a2,
author = {A. A. Kon'kov},
title = {On non-negative solutions of quasilinear elliptic inequalities},
journal = {Izvestiya. Mathematics },
pages = {255--329},
publisher = {mathdoc},
volume = {63},
number = {2},
year = {1999},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_2_a2/}
}
A. A. Kon'kov. On non-negative solutions of quasilinear elliptic inequalities. Izvestiya. Mathematics , Tome 63 (1999) no. 2, pp. 255-329. http://geodesic.mathdoc.fr/item/IM2_1999_63_2_a2/