On non-negative solutions of quasilinear elliptic inequalities
Izvestiya. Mathematics , Tome 63 (1999) no. 2, pp. 255-329

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the solutions of the inequalities $$ Lu\geqslant F(x,u), \qquad \mathcal Lu\geqslant F(x,u), $$ where $$ L=\sum_{i,j=1}^n\frac\partial{\partial x_i}\biggl(a_{ij}(x)\frac\partial{\partial x_j}\biggr), \qquad \mathcal L=\sum_{i,j=1}^n a_{ij}(x)\frac{\partial^2}{\partial x_i\,\partial x_j}\,, $$ are differential operators of elliptic type and $F$ is some function.
@article{IM2_1999_63_2_a2,
     author = {A. A. Kon'kov},
     title = {On non-negative solutions of quasilinear elliptic inequalities},
     journal = {Izvestiya. Mathematics },
     pages = {255--329},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_2_a2/}
}
TY  - JOUR
AU  - A. A. Kon'kov
TI  - On non-negative solutions of quasilinear elliptic inequalities
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 255
EP  - 329
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_2_a2/
LA  - en
ID  - IM2_1999_63_2_a2
ER  - 
%0 Journal Article
%A A. A. Kon'kov
%T On non-negative solutions of quasilinear elliptic inequalities
%J Izvestiya. Mathematics 
%D 1999
%P 255-329
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_2_a2/
%G en
%F IM2_1999_63_2_a2
A. A. Kon'kov. On non-negative solutions of quasilinear elliptic inequalities. Izvestiya. Mathematics , Tome 63 (1999) no. 2, pp. 255-329. http://geodesic.mathdoc.fr/item/IM2_1999_63_2_a2/