On a~problem of M.\,A.~Lavrent'ev concerning the representability of functions by series of polynomials in the complex domain
Izvestiya. Mathematics , Tome 63 (1999) no. 2, pp. 245-254.

Voir la notice de l'article provenant de la source Math-Net.Ru

M. A. Lavrent'ev has constructed an example of a compact set $E$ in $\mathbb C$ that is the boundary of a domain containing $\infty$ and such that every portion of $E$ separates the plane. Let $\{D_{n_k}\}$ and $\{D_{m_k}\}$ be two subsequences of bounded domains in the complement to $E$ such that every neighbourhood of every point of $E$ contains domains of both subsequences. Let functions $f_1(z)$ and $f_2(z)$ be defined in a disc $U$ that contains $E$. Suppose that they are regular outside $E$, coincide on all Domains $\{D_{m_k}\}$ and are limits everywhere in $U$ of pointwise convergent sequences of polynomials. Are there always domains in $\{D_{m_k}\}$ on which $f_1$ and $f_2$ coincide identically? In this paper we give a negative answer to this question of Lavrent'ev.
@article{IM2_1999_63_2_a1,
     author = {A. A. Danielyan},
     title = {On a~problem of {M.\,A.~Lavrent'ev} concerning the representability of functions by series of polynomials in the complex domain},
     journal = {Izvestiya. Mathematics },
     pages = {245--254},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_2_a1/}
}
TY  - JOUR
AU  - A. A. Danielyan
TI  - On a~problem of M.\,A.~Lavrent'ev concerning the representability of functions by series of polynomials in the complex domain
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 245
EP  - 254
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_2_a1/
LA  - en
ID  - IM2_1999_63_2_a1
ER  - 
%0 Journal Article
%A A. A. Danielyan
%T On a~problem of M.\,A.~Lavrent'ev concerning the representability of functions by series of polynomials in the complex domain
%J Izvestiya. Mathematics 
%D 1999
%P 245-254
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_2_a1/
%G en
%F IM2_1999_63_2_a1
A. A. Danielyan. On a~problem of M.\,A.~Lavrent'ev concerning the representability of functions by series of polynomials in the complex domain. Izvestiya. Mathematics , Tome 63 (1999) no. 2, pp. 245-254. http://geodesic.mathdoc.fr/item/IM2_1999_63_2_a1/

[1] Lavrentieff M., “Sur les fonctions d'une variable complexe representables par des series de polynomes”, Actual. Sci. et Industr., 441:5 (1936), 1–62; Lavrentev M. A., Izbrannye trudy. Matematika i mekhanika, Nauka, M. | MR

[2] Hartogs F., Rosethal A., “Über Folgen analytischer Functionen”, Math. Ann., 1928, no. 100, 212–263 | DOI | MR | Zbl

[3] Mergelyan S. N., “O nekotorykh klassakh mnozhestv i ikh prilozheniyakh”, Nekotorye problemy matematiki i mekhaniki, Nauka, Novosibirsk, 1961, 133–172

[4] Mergelyan S. N., Danielyan A. A., “O posledovatelnostyakh polinomov, skhodyaschikhsya na mnozhestvakh tipa $F_\sigma $”, Dokl. AN ArmSSR, 86:2 (1988), 54–56 | MR

[5] Danielyan A. A., “O predstavlenii funktsii posledovatelnostyami ravnomerno ogranichennykh polinomov na kompaktnykh mnozhestvakh kompleksnoi ploskosti”, Izv. AN ArmSSR. Matematika, 21:4 (1986), 345–357 | MR | Zbl

[6] Mergelyan S. N., “Ravnomernoe priblizhenie funktsii komplesnogo peremennogo”, UMN, 7:2 (1952), 31–122 | MR | Zbl

[7] Gamelin T., Ravnomernye algebry, Mir, M., 1973 | Zbl

[8] Rubel L. A., Shields A. L., “Bounded approximation by polynomials”, Acta Math., 112 (1964), 145–162 | DOI | MR | Zbl

[9] Farrel O. J., “An approximation by polynomials to a function analytic in a simply connected region”, Bull. Amer. Math. Soc., 41 (1935), 707–711 | DOI | Zbl

[10] Hartogs F., “Über die Grenzfunctionen beschränkter Folgen von analytischen Functionen”, Math. Ann., 98 (1928), 164–178 | DOI | MR

[11] Keldysch M., “Sur les suites de polynomes bornes dans leur ensemble”, Matem. sb., 42 (1935), 719–724 | Zbl

[12] Mergelyan S. N., Talalyan A. A., “Ob odnom klasse tochechno-razryvnykh funktsii”, DAN ArmSSR, 32 (1961), 183–187 | MR | Zbl

[13] Kolesnikov S. V., “Ob odnoi teoreme M. V. Keldysha, kasayuscheisya potochechnoi skhodimosti posledovatelnosti polinomov”, Matem. sb., 124 (166) (1984), 568–570 | MR | Zbl

[14] Danielyan A. A., “O funktsiyakh pervogo klassa Bera, opredelennykh na kompaktnykh mnozhestvakh”, Dokl. rassh. zased. seminara Inst. prikl. matem. im. I. N. Vekua, 1, Tbilisi, 1985, 64–67 | MR

[15] Danielyan A. A., Dokl. RAN, 341 (1995), 10–12 | MR | Zbl