Oscillations of von Karman's plate in a~potential flow of gas
Izvestiya. Mathematics , Tome 63 (1999) no. 2, pp. 219-244.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the problem of non-linear oscillations of a clamped plate in a flow of gas. The dynamics of the plate is described by a modification of von Karman's evolution equations, in which the rotatory inertia of the elements of the plate is taken into account. To describe the influence of the gas flow we apply the linearized theory of potential flows. We prove the global existence and uniqueness of weak solutions of the problem under investigation and study their properties. We show that under certain conditions on the initial data the problem can be reduced to a retarded non-linear partial differential equation for the displacement of the plate. We justify certain heuristic formulae for aerodynamic pressure. Our approach is a general one and enables us to consider both subsonic and supersonic flows.
@article{IM2_1999_63_2_a0,
     author = {L. Boutet de Monvel and I. D. Chueshov},
     title = {Oscillations of von {Karman's} plate in a~potential flow of gas},
     journal = {Izvestiya. Mathematics },
     pages = {219--244},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_2_a0/}
}
TY  - JOUR
AU  - L. Boutet de Monvel
AU  - I. D. Chueshov
TI  - Oscillations of von Karman's plate in a~potential flow of gas
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 219
EP  - 244
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_2_a0/
LA  - en
ID  - IM2_1999_63_2_a0
ER  - 
%0 Journal Article
%A L. Boutet de Monvel
%A I. D. Chueshov
%T Oscillations of von Karman's plate in a~potential flow of gas
%J Izvestiya. Mathematics 
%D 1999
%P 219-244
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_2_a0/
%G en
%F IM2_1999_63_2_a0
L. Boutet de Monvel; I. D. Chueshov. Oscillations of von Karman's plate in a~potential flow of gas. Izvestiya. Mathematics , Tome 63 (1999) no. 2, pp. 219-244. http://geodesic.mathdoc.fr/item/IM2_1999_63_2_a0/

[1] Morozov N. F., Izbrannye dvumernye zadachi teorii uprugosti, Izd-vo LGU, L., 1978 | MR

[2] Lions J.-L., Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969 | MR | Zbl

[3] Chueshov I. D., “Konechnomernost attraktora v nekotorykh zadachakh nelineinoi teorii obolochek”, Matem. sb., 133 (1987), 419–428 | MR | Zbl

[4] Chueshov I. D., “Struktura maksimalnogo attraktora modifitsirovannoi sistemy uravnenii Karmana”, Teoriya funktsii, funkts. analiz i ikh prilozh., 1987, no. 47, 99–104 | MR | Zbl

[5] Lasiecka I., “Finite-dimensionality of attractors assosiated with von Karman plate equations and boundary damping”, J. Diff. Eqs., 117 (1995), 357–389 | DOI | MR | Zbl

[6] Bolotin V. V., Nekonservativnye zadachi teorii uprugoi ustoichivosti, Fizmatgiz, M., 1961 | MR

[7] Dowell E. H., Aeroelastisity of Plates and Shells, Noordhoff International Publishing, Leyden, 1975 | Zbl

[8] Chueshov I. D., “Postroenie reshenii v zadache o kolebaniyakh obolochki v potentsialnom dozvukovom potoke”, Teoriya operatorov, subgarmonichekie funktsii, Nauk. dumka, Kiev, 1991, 147–154 | MR | Zbl

[9] Miyatake S., “A sharp form of the existence theorem for hyperbolic mixed problems of second order”, J. Math. Kyoto Univ., 17 (1977), 199–223 | MR | Zbl

[10] Chueshov I. D., “Silnye resheniya i attraktor sistemy uravnenii Karmana”, Matem. sb., 181 (1990), 25–36 | Zbl

[11] Boutet de Monvel L., Chueshov I. D., Rezounenko A. V., “Long-time behaviour of strong solutions of retarded nonlinear P.D.E.s.”, Commun. in Partial Diff. Eds., 22 (1997), 1453–1474 | DOI | MR | Zbl

[12] Chueshov I. D., “Ob odnoi sisteme uravnenii s zapazdyvaniem, voznikayuschei v aerouprugosti”, Teoriya funktsii, funkts. analiz i ikh prilozh., 1990, no. 54, 123–130

[13] Chueshov I. D., Rezounenko A. V., “Global attractors for a class of retarded quasilinear partial differential equations”, C. R. Acad. Sci. Paris. Ser. I, 321 (1995), 607–612 | MR | Zbl

[14] Krasilschikova E. A., Tonkoe krylo v szhimaemom potoke, Nauka, M., 1978

[15] Boutet de Monvel L., Chueshov I. D., “Non-linear oscillations of a plate in a flow of gas”, C. R. Acad. Sci. Paris. Ser. I, 322 (1996), 1001–1006 | MR | Zbl

[16] Chueshov I. D., “Kvazistaticheskii variant sistemy uravnenii Karmana”, Matem. fizika, analiz, geometriya, 1 (1994), 149–167 | MR | Zbl

[17] Bergh J., Löfström J., Interpolation Spaces: an Introduction, Springer, Berlin–Heidelberg–N.Y., 1976 | Zbl

[18] Lions J.-L., Magenes E., Non-Homogeneous Boundary Value Problems and Applications, V. 1, Springer, Berlin–Heidelberg–N.Y., 1972

[19] Ilyushin A. A., “Zakon ploskikh sechenii v aerodinamike bolshikh sverkhzvukovykh skorostei”, Prikl. matem. i mekh., 20:6 (1956), 733–755 | MR