On weights of the $l$-adic representation and arithmetic of Frobenius eigenvalues
Izvestiya. Mathematics , Tome 63 (1999) no. 1, pp. 181-218.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $J$ be an absolutely simple Abelian variety over a number field $k$, $[k:\mathbb Q]\infty$. Assume that $\operatorname{Cent}(\operatorname{End}(J\otimes\overline k))=\mathbb Z$. If the division $\mathbb Q$-algebra $\operatorname{End}^0(J\otimes\overline k)$ splits at a prime number $l$, then the $l$-adic representation is defined by the miniscule weights (microweights) of simple classical Lie algebras of types $A_m$, $B_m$$C_m$ or $D_m$. If $S$ is a K3 surface over a sufficiently large number field $k\subset\mathbb C$ and the Hodge group $\operatorname{Hg}(S\otimes_k\mathbb C)$ is semisimple, then $S$ has ordinary reduction at each non-Archimedean place of $k$ in some set of Dirichlet density 1. If $J$ is an absolutely simple Abelian threefold of type IV in Albert's classification over a sufficiently large number field, then $J$ has ordinary reduction at each place in some set of Dirichlet density 1.
@article{IM2_1999_63_1_a7,
     author = {S. G. Tankeev},
     title = {On weights of the $l$-adic representation and arithmetic of {Frobenius} eigenvalues},
     journal = {Izvestiya. Mathematics },
     pages = {181--218},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a7/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - On weights of the $l$-adic representation and arithmetic of Frobenius eigenvalues
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 181
EP  - 218
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a7/
LA  - en
ID  - IM2_1999_63_1_a7
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T On weights of the $l$-adic representation and arithmetic of Frobenius eigenvalues
%J Izvestiya. Mathematics 
%D 1999
%P 181-218
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a7/
%G en
%F IM2_1999_63_1_a7
S. G. Tankeev. On weights of the $l$-adic representation and arithmetic of Frobenius eigenvalues. Izvestiya. Mathematics , Tome 63 (1999) no. 1, pp. 181-218. http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a7/

[1] André Y., “On the Shafarevich and Tate conjectures for hyperkähler varieties”, Math. Ann., 305 (1996), 205–248 | DOI | MR | Zbl

[2] Bogomolov F. A., “Sur l'algebricité des représentations $l$-adiques”, C. R. Acad. Sc. Paris. Ser. I Math., 290 (1980), 701–703 | MR | Zbl

[3] Burbaki N., Algebra, Gl. 4–6, Nauka, M., 1965 | MR

[4] Burbaki N., Gruppy i algebry Li, gl. 1–3, Mir, M., 1976 ; гл. 4–6, 1972 ; гл. 7–8, 1978 | MR | Zbl

[5] Algebraic number theory, Proc. International Conf. (Brighton, 1965), eds. J. W. S. Cassels, A. Frohlich, Academic Press, London; Thompson, Washington, D.C., 1967 | MR

[6] Chi W., “On the $l$-adic representations attached to simple abelian varieties of type IV”, Bull. Austral. Math. Soc., 44 (1991), 71–78 | DOI | MR | Zbl

[7] Chi W., “$l$-adic and $\lambda $-adic representations associated to abelian varieties defined over number fields”, Amer. J. Math., 114 (1992), 315–353 | DOI | MR | Zbl

[8] Deligne P., “Variétés abéliennes ordinaires sur un corps fini”, Invent. Math., 8 (1969), 238–243 | DOI | MR | Zbl

[9] Deligne P., “La conjecture de Weil pour les surfaces $K3$”, Invent. Math., 15 (1972), 206–226 | DOI | MR | Zbl

[10] Faltings G., “Endlichkeitssätze für abelsche Varietäten über Zahlkörpern”, Invent. Math., 73 (1983), 349–366 | DOI | MR | Zbl

[11] Mumford D., “Families of abelian varieties”, Algebraic Groups and Discontinuous Subgroups, Proc. Sympos. Pure Math., 9, Amer. Math. Soc., Providence, RI, 1966, 347–352 | MR

[12] Mumford D., Lectures on curves on an algebraic surface, Princeton Univ. Press, Princeton – N. J., 1966 | MR | Zbl

[13] Mumford D., Abelian varieties, Tata Inst. Fund. Res., Bombay; Oxford Univ. Press, London, 1970 (with C. P. Ramanujam) | MR | Zbl

[14] Noot R., “Abelian varieties – Galois representation and properties of ordinary reduction”, Compositio Mathematica, 97 (1995), 161–171 | MR | Zbl

[15] Ogus A., “Hodge cycles and crystalline cohomology. Hodge cycles, motives, and Shimura varieties”, Lecture Notes in Math., 900, Springer-Verlag, Berlin, 1982, 357–414 | MR

[16] Pink R., $l$-adic algebraic monodromy groups, cocharacters, and the Mumford–Tate conjecture, Preprint Universität Mannheim 11/1997 | MR

[17] Sen S., “Lie algebras of Galois groups arising from Hodge–Tate modules”, Ann. Math., 97:2 (1973), 160–170 | DOI | MR | Zbl

[18] Serre J.-P., “Groupes algébriques associés aux modules de Hodge–Tate”, Astérisque, 65 (1979), 155–188 | MR

[19] Serre J.-P., “Propriétés conjecturales des groupes de Galois motiviques et des représentations $l$-adiques”, Proc. of Symposia in Pure Math., Part 1, 55 (1994), 377–400 | MR | Zbl

[20] Shimura G., Introduction to the arithmetic theory of automorphic functions, Iwanami Shoten; Publishers and Princeton University Press, 1971 | MR | Zbl

[21] Tankeev S. G., “Tsikly na prostykh abelevykh mnogoobraziyakh prostoi razmernosti”, Izv. AN SSSR. Ser. matem., 46:1 (1982), 155–170 | MR

[22] Tankeev S. G., “Tsikly na prostykh abelevykh mnogoobraziyakh prostoi razmernosti nad chislovymi polyami”, Izv. AN SSSR. Ser. matem., 51:6 (1987), 1214–1227 | MR

[23] Tankeev S. G., “Poverkhnosti tipa $K3$ nad chislovymi polyami i $l$-adicheskie predstavleniya”, Izv. AN SSSR. Ser. matem., 52:6 (1988), 1252–1271 | MR

[24] Tankeev S. G., “Abelevy mnogoobraziya Kugi–Satake i $l$-adicheskie predstavleniya”, Izv. RAN. Ser. matem., 55:4 (1991), 877–889 | MR | Zbl

[25] Tankeev S. G., “Poverkhnosti tipa $K3$ nad chislovymi polyami i gipoteza Mamforda–Teita, II”, Izv. RAN. Ser. matem., 59:3 (1995), 179–206 | MR | Zbl

[26] Tankeev S. G., “O sledakh Frobeniusa”, Izv. RAN. Ser. matem., 62:1 (1998), 165–200 | MR | Zbl

[27] Tankeev S. G., Frobenius traces and minuscule weights, Preprint of the Warwick University 39/1996 | MR

[28] Tankeev S. G., Frobenius traces and minuscule weights, II, Preprint of the Institut des Hautes Études Scientifiques, IHES/M/97/20, Bures-sur-Yvette

[29] Tankeev S. G., On the existence of ordinary reductions of a simple abelian threefold of type, IV, Preprint of the Institut des Hautes Études Scientifiques, IHES/M/97/21, Bures-sur-Yvette

[30] Tankeev S. G., On the existence of ordinary reductions of a $K3$ surface over a number field, Preprint of the Institut des Hautes Études Scientifiques, IHES/M/97/27, Bures-sur-Yvette

[31] Tankeev S. G., On weights of $l$-adic representation, Preprint of the Mathematical Sciences Research Institute, 1997–047, Berkeley

[32] Tate J., “Classes d' isogénie des variétés abéliennes sur un corps fini (d' après T. Honda)”, Séminaire Bourbaki 1968/69, Exposé 352, Lecture Notes in Math., 179, Springer-Verlag, Berlin, 1971, 95–110

[33] Zarkhin Yu. G., “Abelevy mnogoobraziya, $l$-adicheskie predstavleniya i $\mathrm {SL}_2$”, Izv. AN SSSR. Ser. matem., 43:2 (1979), 294–308 | MR | Zbl

[34] Zarhin Yu. G., “Hodge group of $K3$ surface”, J. für die reine und angew. Math., 341 (1983), 193–220 | MR

[35] Zarkhin Yu. G., “Vesa prostykh algebr Li v kogomologiyakh algebraicheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 48:2 (1984), 264–304 | MR | Zbl