On weights of the $l$-adic representation and arithmetic of Frobenius eigenvalues
Izvestiya. Mathematics , Tome 63 (1999) no. 1, pp. 181-218

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $J$ be an absolutely simple Abelian variety over a number field $k$, $[k:\mathbb Q]\infty$. Assume that $\operatorname{Cent}(\operatorname{End}(J\otimes\overline k))=\mathbb Z$. If the division $\mathbb Q$-algebra $\operatorname{End}^0(J\otimes\overline k)$ splits at a prime number $l$, then the $l$-adic representation is defined by the miniscule weights (microweights) of simple classical Lie algebras of types $A_m$, $B_m$$C_m$ or $D_m$. If $S$ is a K3 surface over a sufficiently large number field $k\subset\mathbb C$ and the Hodge group $\operatorname{Hg}(S\otimes_k\mathbb C)$ is semisimple, then $S$ has ordinary reduction at each non-Archimedean place of $k$ in some set of Dirichlet density 1. If $J$ is an absolutely simple Abelian threefold of type IV in Albert's classification over a sufficiently large number field, then $J$ has ordinary reduction at each place in some set of Dirichlet density 1.
@article{IM2_1999_63_1_a7,
     author = {S. G. Tankeev},
     title = {On weights of the $l$-adic representation and arithmetic of {Frobenius} eigenvalues},
     journal = {Izvestiya. Mathematics },
     pages = {181--218},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a7/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - On weights of the $l$-adic representation and arithmetic of Frobenius eigenvalues
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 181
EP  - 218
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a7/
LA  - en
ID  - IM2_1999_63_1_a7
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T On weights of the $l$-adic representation and arithmetic of Frobenius eigenvalues
%J Izvestiya. Mathematics 
%D 1999
%P 181-218
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a7/
%G en
%F IM2_1999_63_1_a7
S. G. Tankeev. On weights of the $l$-adic representation and arithmetic of Frobenius eigenvalues. Izvestiya. Mathematics , Tome 63 (1999) no. 1, pp. 181-218. http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a7/