Embedding $p$-elementary lattices
Izvestiya. Mathematics , Tome 63 (1999) no. 1, pp. 73-102

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the ramification of embeddings of local lattices or quadratic forms over the ring $\mathbb Z_p$ of $p$-adic numbers. It is proved that every primitive embedding decomposes uniquely into an orthogonal sum of minimal indecomposable embeddings, and all such embeddings are constructed for $p$-elementary lattices. Ramification theory enables us to find the number of orbits of representations for forms and, in particular, for numbers by other quadratic forms over $\mathbb Z_p$, and to calculate the local multipliers in the weight formula for representations of a form by a genus of quadratic forms.
@article{IM2_1999_63_1_a3,
     author = {V. G. Zhuravlev},
     title = {Embedding $p$-elementary lattices},
     journal = {Izvestiya. Mathematics },
     pages = {73--102},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a3/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Embedding $p$-elementary lattices
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 73
EP  - 102
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a3/
LA  - en
ID  - IM2_1999_63_1_a3
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Embedding $p$-elementary lattices
%J Izvestiya. Mathematics 
%D 1999
%P 73-102
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a3/
%G en
%F IM2_1999_63_1_a3
V. G. Zhuravlev. Embedding $p$-elementary lattices. Izvestiya. Mathematics , Tome 63 (1999) no. 1, pp. 73-102. http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a3/