Fractional derivatives and inequalities for trigonometric polynomials in spaces with asymmetric norms
Izvestiya. Mathematics , Tome 62 (1998) no. 6, pp. 1189-1206

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Bernstein–Jackson–Nikol'skii inequalities for fractional derivatives in the case when the norm is asymmetric. Assume that $n\in\mathbb N$, $p_1,p_2,q_1,q_2\in[1,\infty]$, and $\alpha\in\mathbb R_+$. Then $$ \sup_{\substack t_n\in\tau_n\\t_n\not\equiv 0}\dfrac{\|D^\alpha t_n\|_{q_1,q_2}}{\|t_n\|_{p_1,p_2}}\asymp I_\alpha n^{\alpha+\psi_1(p_1,p_2,q_1,q_2)}+n^{\alpha+\psi_2(p_1,p_2,q_1,q_2)}, $$ where $$ I_\alpha=\begin{cases} \alpha,0\leqslant\alpha\leqslant 1,\\ 1,\alpha\geqslant 1, \end{cases} $$ and the functions $\psi_1$ and $\psi_2$ are given by an explicit formula. The asymptotic behaviour is with respect to $n$ for fixed $\alpha$, $p_1$, $p_2$, $q_1$ and $q_2$.
@article{IM2_1998_62_6_a5,
     author = {A. I. Kozko},
     title = {Fractional derivatives and inequalities for trigonometric polynomials in spaces with asymmetric norms},
     journal = {Izvestiya. Mathematics },
     pages = {1189--1206},
     publisher = {mathdoc},
     volume = {62},
     number = {6},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_6_a5/}
}
TY  - JOUR
AU  - A. I. Kozko
TI  - Fractional derivatives and inequalities for trigonometric polynomials in spaces with asymmetric norms
JO  - Izvestiya. Mathematics 
PY  - 1998
SP  - 1189
EP  - 1206
VL  - 62
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1998_62_6_a5/
LA  - en
ID  - IM2_1998_62_6_a5
ER  - 
%0 Journal Article
%A A. I. Kozko
%T Fractional derivatives and inequalities for trigonometric polynomials in spaces with asymmetric norms
%J Izvestiya. Mathematics 
%D 1998
%P 1189-1206
%V 62
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1998_62_6_a5/
%G en
%F IM2_1998_62_6_a5
A. I. Kozko. Fractional derivatives and inequalities for trigonometric polynomials in spaces with asymmetric norms. Izvestiya. Mathematics , Tome 62 (1998) no. 6, pp. 1189-1206. http://geodesic.mathdoc.fr/item/IM2_1998_62_6_a5/