Fractional derivatives and inequalities for trigonometric polynomials in spaces with asymmetric norms
Izvestiya. Mathematics , Tome 62 (1998) no. 6, pp. 1189-1206
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the Bernstein–Jackson–Nikol'skii inequalities for fractional derivatives in the case when the norm is asymmetric. Assume that $n\in\mathbb N$, $p_1,p_2,q_1,q_2\in[1,\infty]$, and $\alpha\in\mathbb R_+$. Then
$$
\sup_{\substack t_n\in\tau_n\\t_n\not\equiv 0}\dfrac{\|D^\alpha t_n\|_{q_1,q_2}}{\|t_n\|_{p_1,p_2}}\asymp I_\alpha n^{\alpha+\psi_1(p_1,p_2,q_1,q_2)}+n^{\alpha+\psi_2(p_1,p_2,q_1,q_2)},
$$
where
$$
I_\alpha=\begin{cases}
\alpha,0\leqslant\alpha\leqslant 1,\\ 1,\alpha\geqslant 1,
\end{cases}
$$
and the functions $\psi_1$ and $\psi_2$ are given by an explicit formula. The asymptotic behaviour is with respect to $n$ for fixed $\alpha$, $p_1$, $p_2$, $q_1$ and $q_2$.
@article{IM2_1998_62_6_a5,
author = {A. I. Kozko},
title = {Fractional derivatives and inequalities for trigonometric polynomials in spaces with asymmetric norms},
journal = {Izvestiya. Mathematics },
pages = {1189--1206},
publisher = {mathdoc},
volume = {62},
number = {6},
year = {1998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_6_a5/}
}
TY - JOUR AU - A. I. Kozko TI - Fractional derivatives and inequalities for trigonometric polynomials in spaces with asymmetric norms JO - Izvestiya. Mathematics PY - 1998 SP - 1189 EP - 1206 VL - 62 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1998_62_6_a5/ LA - en ID - IM2_1998_62_6_a5 ER -
A. I. Kozko. Fractional derivatives and inequalities for trigonometric polynomials in spaces with asymmetric norms. Izvestiya. Mathematics , Tome 62 (1998) no. 6, pp. 1189-1206. http://geodesic.mathdoc.fr/item/IM2_1998_62_6_a5/