Fractional derivatives and inequalities for trigonometric polynomials in spaces with asymmetric norms
Izvestiya. Mathematics , Tome 62 (1998) no. 6, pp. 1189-1206.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Bernstein–Jackson–Nikol'skii inequalities for fractional derivatives in the case when the norm is asymmetric. Assume that $n\in\mathbb N$, $p_1,p_2,q_1,q_2\in[1,\infty]$, and $\alpha\in\mathbb R_+$. Then $$ \sup_{\substack t_n\in\tau_n\\t_n\not\equiv 0}\dfrac{\|D^\alpha t_n\|_{q_1,q_2}}{\|t_n\|_{p_1,p_2}}\asymp I_\alpha n^{\alpha+\psi_1(p_1,p_2,q_1,q_2)}+n^{\alpha+\psi_2(p_1,p_2,q_1,q_2)}, $$ where $$ I_\alpha=\begin{cases} \alpha,0\leqslant\alpha\leqslant 1,\\ 1,\alpha\geqslant 1, \end{cases} $$ and the functions $\psi_1$ and $\psi_2$ are given by an explicit formula. The asymptotic behaviour is with respect to $n$ for fixed $\alpha$, $p_1$, $p_2$, $q_1$ and $q_2$.
@article{IM2_1998_62_6_a5,
     author = {A. I. Kozko},
     title = {Fractional derivatives and inequalities for trigonometric polynomials in spaces with asymmetric norms},
     journal = {Izvestiya. Mathematics },
     pages = {1189--1206},
     publisher = {mathdoc},
     volume = {62},
     number = {6},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_6_a5/}
}
TY  - JOUR
AU  - A. I. Kozko
TI  - Fractional derivatives and inequalities for trigonometric polynomials in spaces with asymmetric norms
JO  - Izvestiya. Mathematics 
PY  - 1998
SP  - 1189
EP  - 1206
VL  - 62
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1998_62_6_a5/
LA  - en
ID  - IM2_1998_62_6_a5
ER  - 
%0 Journal Article
%A A. I. Kozko
%T Fractional derivatives and inequalities for trigonometric polynomials in spaces with asymmetric norms
%J Izvestiya. Mathematics 
%D 1998
%P 1189-1206
%V 62
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1998_62_6_a5/
%G en
%F IM2_1998_62_6_a5
A. I. Kozko. Fractional derivatives and inequalities for trigonometric polynomials in spaces with asymmetric norms. Izvestiya. Mathematics , Tome 62 (1998) no. 6, pp. 1189-1206. http://geodesic.mathdoc.fr/item/IM2_1998_62_6_a5/

[1] Weyl H., “Bemerkungen zum Begriff der differentialquotienten gebrochener Ordnung”, Vierteljahresschriff der Naturschenden Gesellschaft in Zurich, 62 (1917), 296–302 | Zbl

[2] Bernshtein S. N., Sobranie sochinenii, T. 1, Izd-vo AN SSSR, M., 1952

[3] Zigmund A., Trigonometricheskie ryady, T. 2, Nauka, M., 1965

[4] Arestov V. V., “Ob integralnykh neravenstvakh dlya trigonometricheskikh polinomov i ikh proizvodnykh”, Izv. AN SSSR. Ser. matem., 45:1 (1981), 3–22 | MR | Zbl

[5] De Vore R., Lorentz G., Constructive approximation, A Series of Comprehensive Studies in Mathematics, 303, 1993

[6] Jackson D., “Certain problem of closest approximation”, Bull. Amer. Math. Soc., 39 (1933), 889–906 | DOI | Zbl

[7] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR

[8] Civin P., “Inequalities for trigonometric polinomials”, Duke Math., 1941, no. 8, 656–665 | DOI | MR | Zbl

[9] Ogiewetzki I. I., “Generalization of the inequality of Civin”, Acta Math. Acad. Sci. hung., 1958, no. 9, 133–135 | DOI | MR

[10] Geisberg S. P., “Analogi neravenstv S. N. Bernshteina dlya drobnoi proizvodnoi”, Doklad na 25 nauch. konfer. Leningr. inzhenerno-stroit. in-ta, Voprosy matem. i geom. modelir., 1967, 5–10

[11] Geisberg S. P., “Drobnye proizvodnye ogranichennykh na osi funktsii”, Izv. Vuzov. Matematika, 1968, no. 11(78), 51–69 | MR | Zbl

[12] Kozko A. I., “Analogi neravenstv Dzheksona–Nikolskogo dlya trigonometricheskikh polinomov v prostranstvakh s nesimmetrichnoi normoi”, Matem. zametki, 61:5 (1997), 687–699 | MR | Zbl

[13] Kozko A. I., “On Jackson–Nikolskii inequalities for trigonometric polynomials of degree $n$ in spaces with assymetrial norms”, East J. on Approximation, 2:2 (1996), 177–186 | MR | Zbl

[14] Kozko A. I., “Mnogomernye neravenstva raznykh metrik v prostranstvakh s nesimmetrichnoi normoi”, Matem. sb., 189:9 (1998), 85–106 | MR | Zbl

[15] Khardi G. G., Littlvud Dzh., Polia G., Neravenstva, IL, M., 1948

[16] Polia G., Sege G., Zadachi i teoremy iz analiza, T. 1, 2, Nauka, M., 1978

[17] Arestov V. V., “O neravenstvakh S. N. Bernshteina dlya algebraicheskikh i trigonometricheskikh polinomov”, DAN SSSR, 246:6 (1979), 1289–1292 | MR | Zbl

[18] Bugrov Ya. S., “Konstruktivnaya kharakteristika klassov funktsii s dominiruyuschei smeshannoi proizvodnoi”, Tr. Matem. in-ta im. V. A. Steklova, CXXXI (1974), 25–32 | MR | Zbl

[19] Nikolskaya N. S., “Priblizhenie differentsiruemykh funktsii mnogikh peremennykh summami Fure v metrike $L_p$”, DAN SSSR, 208:6 (1973), 1282–1285 | MR | Zbl

[20] Temlyakov V. N., Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi, Tr. Matem. in-ta im. V. A. Steklova, 178, 1986 | MR | Zbl

[21] Yudin A. A., Yudin V. A., “Diskretnye teoremy vlozheniya i konstanty Lebega”, Matem. zametki, 22:3 (1977), 381–394 | MR | Zbl

[22] Galeev E. M., “Poryadkovye otsenki proizvodnykh periodicheskogo mnogomernogo $\alpha$-yadra Dirikhle v smeshannoi norme”, Matem. sb., 117 (159) (1982), 32–43 | MR | Zbl

[23] Galeev E. M., “Poryadkovye otsenki naimenshikh po vyboru $N$ garmonik norm proizvodnykh yader Dirikhle i Favara”, Matem. sb., 182:4 (1991), 593–604 | Zbl

[24] Maiorov V. E., “Neravenstva Bernshteina–Nikolskogo i otsenki norm yader Dirikhle dlya trigonometricheskikh polinomov po proizvolnym garmonikam”, Matem. zametki, 47:6 (1990), 55–61 | MR | Zbl

[25] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[26] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1962

[27] Stein E. M., “Functions of exponential type”, Ann. Math. (2), 65 (1957), 582–592 | DOI | MR | Zbl

[28] Kudryavtsev L. D., Kurs matematicheskogo analiza, T. 3, Vysshaya shkola, M., 1989 | MR | Zbl

[29] Stechkin S. B., “Obobschenie nekotorykh neravenstv S. N. Bernshteina”, DAN SSSR, 60:9 (1948), 1511–1514 | MR | Zbl

[30] Tikhomirov V. M., “Teoriya priblizhenii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 14, VINITI, M., 1987, 103–260