An exact Jackson--Stechkin inequality for $L^2$-approximation on the interval with the Jacobi weight and on projective spaces
Izvestiya. Mathematics , Tome 62 (1998) no. 6, pp. 1095-1119
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $L^2_{\alpha,\beta}$ be the Hilbert space of real-valued functions on $[0,\pi]$ with scalar product
$$
(F,G)=\int_{0}^{\pi}F(x)G(x)\biggl(\sin\dfrac{x}{2}\biggr)^{2\alpha+1}
\biggl(\cos\dfrac{x}{2}\biggr)^{2\beta+1}\,dx,\qquad \alpha>-1,\quad \beta>-1,
$$
and norm $\|F\|=(F,F)^{1/2}$. We prove in the case when $\alpha>\beta\geqslant-1/2$ the following exact Jackson–Stechkin inequality
$$
E_{n-1} (F)\leqslant\omega_r\bigl(F,2x_{n}^{\alpha,\beta}\bigr),\quad
F\in L^2_{\alpha,\beta},
$$
between the best of $F$ by cosine-polynomials of order $n-1$ and its generalized modulus of continuity of (real) order $r\geqslant 1$: $n\geqslant\max\bigl\{2,1+
\frac{\alpha-\beta}{2}\bigr\}$ if $\beta>-\frac12$ , $n\geqslant 1$ if $\beta=-\frac12$ , where $x_{n}^{\alpha,\beta}$ is the first positive zero of the Jacobi cosine-polynomial
$P_{n}^{(\alpha,\beta)}(\cos x)$. We deduce from this inequality similar inequalities for mean-square approximations of functions of several variables given on projective spaces.
@article{IM2_1998_62_6_a1,
author = {A. G. Babenko},
title = {An exact {Jackson--Stechkin} inequality for $L^2$-approximation on the interval with the {Jacobi} weight and on projective spaces},
journal = {Izvestiya. Mathematics },
pages = {1095--1119},
publisher = {mathdoc},
volume = {62},
number = {6},
year = {1998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_6_a1/}
}
TY - JOUR AU - A. G. Babenko TI - An exact Jackson--Stechkin inequality for $L^2$-approximation on the interval with the Jacobi weight and on projective spaces JO - Izvestiya. Mathematics PY - 1998 SP - 1095 EP - 1119 VL - 62 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1998_62_6_a1/ LA - en ID - IM2_1998_62_6_a1 ER -
%0 Journal Article %A A. G. Babenko %T An exact Jackson--Stechkin inequality for $L^2$-approximation on the interval with the Jacobi weight and on projective spaces %J Izvestiya. Mathematics %D 1998 %P 1095-1119 %V 62 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1998_62_6_a1/ %G en %F IM2_1998_62_6_a1
A. G. Babenko. An exact Jackson--Stechkin inequality for $L^2$-approximation on the interval with the Jacobi weight and on projective spaces. Izvestiya. Mathematics , Tome 62 (1998) no. 6, pp. 1095-1119. http://geodesic.mathdoc.fr/item/IM2_1998_62_6_a1/