An exact Jackson--Stechkin inequality for $L^2$-approximation on the interval with the Jacobi weight and on projective spaces
Izvestiya. Mathematics , Tome 62 (1998) no. 6, pp. 1095-1119

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $L^2_{\alpha,\beta}$ be the Hilbert space of real-valued functions on $[0,\pi]$ with scalar product $$ (F,G)=\int_{0}^{\pi}F(x)G(x)\biggl(\sin\dfrac{x}{2}\biggr)^{2\alpha+1} \biggl(\cos\dfrac{x}{2}\biggr)^{2\beta+1}\,dx,\qquad \alpha>-1,\quad \beta>-1, $$ and norm $\|F\|=(F,F)^{1/2}$. We prove in the case when $\alpha>\beta\geqslant-1/2$ the following exact Jackson–Stechkin inequality $$ E_{n-1} (F)\leqslant\omega_r\bigl(F,2x_{n}^{\alpha,\beta}\bigr),\quad F\in L^2_{\alpha,\beta}, $$ between the best of $F$ by cosine-polynomials of order $n-1$ and its generalized modulus of continuity of (real) order $r\geqslant 1$: $n\geqslant\max\bigl\{2,1+ \frac{\alpha-\beta}{2}\bigr\}$ if $\beta>-\frac12$ , $n\geqslant 1$ if $\beta=-\frac12$ , where $x_{n}^{\alpha,\beta}$ is the first positive zero of the Jacobi cosine-polynomial $P_{n}^{(\alpha,\beta)}(\cos x)$. We deduce from this inequality similar inequalities for mean-square approximations of functions of several variables given on projective spaces.
@article{IM2_1998_62_6_a1,
     author = {A. G. Babenko},
     title = {An exact {Jackson--Stechkin} inequality for $L^2$-approximation on the interval with the {Jacobi} weight and on projective spaces},
     journal = {Izvestiya. Mathematics },
     pages = {1095--1119},
     publisher = {mathdoc},
     volume = {62},
     number = {6},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_6_a1/}
}
TY  - JOUR
AU  - A. G. Babenko
TI  - An exact Jackson--Stechkin inequality for $L^2$-approximation on the interval with the Jacobi weight and on projective spaces
JO  - Izvestiya. Mathematics 
PY  - 1998
SP  - 1095
EP  - 1119
VL  - 62
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1998_62_6_a1/
LA  - en
ID  - IM2_1998_62_6_a1
ER  - 
%0 Journal Article
%A A. G. Babenko
%T An exact Jackson--Stechkin inequality for $L^2$-approximation on the interval with the Jacobi weight and on projective spaces
%J Izvestiya. Mathematics 
%D 1998
%P 1095-1119
%V 62
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1998_62_6_a1/
%G en
%F IM2_1998_62_6_a1
A. G. Babenko. An exact Jackson--Stechkin inequality for $L^2$-approximation on the interval with the Jacobi weight and on projective spaces. Izvestiya. Mathematics , Tome 62 (1998) no. 6, pp. 1095-1119. http://geodesic.mathdoc.fr/item/IM2_1998_62_6_a1/